Deformation Resistance Model of Aluminum Alloy Based on Least Squares Support Vector Machine Reversed Modeling Method
YANG Jing-ming1,2,MA Feng-yan1,2,CHE Hai-jun1,2,WANG Wan-hong3,CHEN Yang1,2
1.National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Qinhuangdao,Hebei 066004, China;
2. Key Lab of Industrial Computer Control Engineering of Hebei Province, Yanshan University, Qinhuangdao, Hebei 066004, China;
3. Henan Mingtai Al. Industrial Co. Ltd, Gongyi, Henan 451200, China
Abstract:According to lots of actual measured rolling data of aluminum alloy from one factory of aluminum hot tandem rolling, the deformation resistance model by least squares support vector machine reversed modeling method is got.Meanwhile, Bacteria Foraging Optimization algorithm was applied to optimize the parameters of LSSVM model to improve the accuracy.Compared with the traditional deformation resistance model,the results show that the deformation resistance model by reverse modeling is more accurate.
杨景明,马凤艳,车海军,王万宏,陈杨. 基于最小二乘支持向量机的反向建模的铝合金变形抗力模型[J]. 计量学报, 2013, 34(6): 532-536.
YANG Jing-ming,MA Feng-yan,CHE Hai-jun,WANG Wan-hong,CHEN Yang. Deformation Resistance Model of Aluminum Alloy Based on Least Squares Support Vector Machine Reversed Modeling Method. Acta Metrologica Sinica, 2013, 34(6): 532-536.
[1]周纪华,王再英,高永生,等.铝合金流动应力数学模型[J].北京科技大学学报,1994,16(4):351-356.
[2]黄长青,陈婕,秦月,等.5052铝合金板带热粗轧轧制力模型的研究[J].轻金属,2010,(10):52-55.
[3]郑玉林,陈文敬,任文达,等.5052铝合金热压缩变形流变应力[J].铝加工,2007,(174):17-24.
[4]卢桂馥,王勇,窦易文. 基于遗传算法和最小二乘支持向量机的织物剪切性能预测[J].计量学报,2009,30(6):543-546.
[5]顾燕萍,赵文杰,吴占松.最小二乘支持向量机的算法研究[J].清华大学学报(自然科学版),2010,50(7):1063-1066.
[6]付忠广,靳涛,周丽君,等. 复杂系统反向建模方法及偏最小二乘法建模应用研究[J]. 中国电机工程学报,2009,2(29):25-29.
[7]孙一康,带钢热连轧的模型与控制[M].北京:冶金工业出版社,2002.
[8]Passino K M. Bio-mimicry of bacterial foraging for distributed optimization and control[J]. IEEE Control Systems Magazine,2002,22(3):52-67.
[9]Berg H, Brown D. Chemo taxis in Escherichia coil analyzed by three-dimensionaltracking[J].Nature,1972,239:500-504.
[10]Lowe G, Meister M, Berg H. Rapid rotation of flagella bundles in swimming bacteria[J].Nature,1987,325:637-640.
[11]Liu Y, Passino K M. Bio-mimicry of social foraging bacteria for distributed optimization: models,principles,and emergent behaviors[J].Journal of Optimization Theory and Applications,2002,115(3):603-628.
[12]雷秀娟,群智能优化算法及其应用[M].北京:科学出版社,2012.
[13]Burton W A, Passino K M, Thomas A W. Foraging theory for decision making system design: task-type choice[C]//43rd IEEE Conference on Decision and Control,2004,48(4):4740-4745.
[14]Andrews B W, Passino K M, Waite T A. Foraging theory for decision making system design: processing-length choice[J].Submitted IEEE Control Systems Magazine,2004, 5:4740-4745.
[15]Dong H K, Jae H C. A biologically inspired intelligent PID controller tuning for AVR systems[J]. International Journal of Control,Automation and Systems,2006,4(5):624-636.
[16]Dong H K, Jae H C. Adaptive tuning of PID controller for multivariable systems using Bacterial Foraging Based Optimization[J].AWIC,2005,3528: 231-235.