New Detection Method Based on Local Mean Decomposition for Voltage Sags
HU Biao1,WANG Xiao-guang1,WU Su-min1,WU Li-na2
1. State Grid Zhejiang Yunhe Electric Power Company, Yunhe, Zhejiang 323600, China
2. North China Electric Power University, Baoding, Hebei 071003, China
Abstract:A new approach for voltage sag detection and analysis using local mean decomposition (LMD) is proposed. The method uses instantaneous amplitude and instantaneous frequency obtained by the decomposition to detect the drop value, frequency and the starting and ending time of the voltage sag. A new method of waveform extension which names horizontal and vertical proportion extension method is proposed to improve the end effect of LMD. Firstly, the lifting wavelet is applied to denoise original signals and horizontal and vertical proportion extension is performed on the denoised signals. Then the extended signals are decomposed by LMD. Further, the product function given by the decomposition is intercepted according to the corresponding time of the original signals. Finally, the feature information of voltage sag is extracted form instantaneous amplitude and instantaneous frequency obtained by LMD. The test results are compared with the results of Hilbert-Huang transform (HHT),and the simulation results illustrate that the proposed method is feasible and effective, which can provide a basis for the further identification of different voltage sag sources.
胡标, 王晓光, 吴丽娜, 吴素敏. 基于局部均值分解的电压暂降检测新方法[J]. 计量学报, 2015, 36(6): 622-627.
HU Biao,WANG Xiao-guang,WU Su-min,WU Li-na. New Detection Method Based on Local Mean Decomposition for Voltage Sags. Acta Metrologica Sinica, 2015, 36(6): 622-627.
[1]程浩忠.电能质量[M].北京:清华大学出版社,2006.
[2]Gomez J C, Morcos M M. Voltage sag and recovery time in repetitive events[J]. IEEE Transactions on Power Delivery,2002,17(4):1037-1043.
[3]张秀娟,徐永海,肖湘宁.基于dq变换与小波变换的电能质量扰动检测与识别方法[J].电力自动化设备,2005,25(7): 1-5.
[4]罗志增,袁飞龙,高云园. 小波和希尔伯特变换在脑电信号消噪中的对比研究[J].计量学报,2013,34(6):567-572.
[5]全惠敏,戴瑜兴.电压暂降的改进 S 变换分析与分类[J].湖南大学学报,2011,38(3):47-50.
[6]程军圣,张亢,杨宇,等.局部均值分解与经验模式分解的对比研究[J].振动与冲击,2009,28(5):13-16.
[7]Smith J S.The local mean decomposition and its application to EEG perception data[J]. Journal of The Royal Society Interface,2005,2(5):443-454.
[8]谢平,杨玉昕,江国乾,等.基于局部均值分解的滚动轴承故障诊断新方法[J].计量学报,2014,35(1):73-77.
[9]杨德昌,唐巍,屈瑞谦,等.基于改进局部均值分解的低频振荡参数提取[J].中国电机工程学报,2013,33(4):135-140.
[10]陈勇,孙虎儿,王志武,等.基于提升小波降噪与 LMD 的转子故障特征提取方法[J].矿山机械,2013, 41(9):138-142.
[11]易吉良,彭建春,谭会生.采用不完全 S 变换的电能质量扰动检测方法[J].高电压技术,2009,35(10):2562-2567.
[12]宋海军,黄传金,刘宏超,等.基于改进 LMD 的电能质量扰动检测新方法[J].中国电机工程学报,2014,34(10): 1700-1708.