Separation of Two-span Rotor Fault Signal Based on Second-order Statistics Blind Identification
MIAO Feng1,2,ZHAO Rong-zhen1
1.Key Laboratory of Digital Manufacturing Technology and Application, The Ministry of Education,Lanzhou University of Technology, Lanzhou, Gansu 730050, China;
2.Luoyang Normal University, College of Physics and Electronic Information Luoyang, Luoyang, Henan 471022, China
Abstract:A algorithm of blind source separation is proposed based on the second-order statictics.The method focuses on noise separation rather than noise removal.So there are no harms to effective signals. This idea might provide a new way for noise reduction. The algorithm of blind source separation based on the second-order statistics blind identification is applied to seismic data.The results show that the algorithm is effect ,noises are separated and re-moved,and accurate is improved.
[1]张海军,温广瑞,屈梁生.一种提高诊断信息质量的方法[J].西安交通大学大学学报,2002,36(3):295-299.
[2]宋友,柳重堪,李其汉.含噪振动信号中早期碰磨的故障检测研究[J].航空学报,2003,24(1):32-35.
[3]李志农,郝伟,韩捷,等. 噪声环境下机械故障源的盲分离[J].农业机械学报,2006,37(11):109-113.
[4]雷衍斌,李舜酩,门秀花,等,基于自相关降噪的混叠转子振动信号分离[J].振动与冲击,2010,30(1):218-222.
[5]李熠,何永勇,李志农,等.盲源分离和小波消噪在碰磨声频信号分析中的应用[J].机械强度,2005,27(6):719-724.
[6]李志农,范涛,刘立州,等.基于变分贝叶斯理论的机械故障源盲分离方法研究[J].振动与冲击,2009,28(6):12-16.
[7]Hyvarinen A. Survey on independent component analysis[J]. Neural Computing Survey, 1999,2:94-128.
[8]Gelle G, Colas M, Serviere C. Blind Source Separation a Tool for Rotating Machine Monitoring by Vibration Analysis[J]. Journal of Sound and Vibration, 2001, 248(5):865-885.
[9]孟宗,梁智,宗振威,等.基于EMMD的欠定旋转机械振动信号盲源分离[J].计量学报,2013,34(4):305-310.