Abstract:To investigate the moving objects in the situation of camera moving, a method that combines the scale invariant feature transform block feature matching with the local differential algorithm is proposed. The method can not only reduce the cost time of image registration and compensate the global motion compensation, which effects on the integrity of the image, but also detect moving objects accurately. Finally, the experiment results can provide its effectiveness.
王洪斌,于菲,李一骏,王跃灵. 分块特征匹配与局部差分结合的运动目标检测[J]. 计量学报, 2015, 36(4): 352-355.
WANG Hong-bin,YU Fei,LI Yi-jun,WANG Yue-ling. Detection of Moving Object by Combining Block Features Matching and Local Differential. Acta Metrologica Sinica, 2015, 36(4): 352-355.
[1]Elhabian S Y, El-sayed K M, Ahmed S H. Moving object detection in spatial domain using background removal techniques-State-of-art [J]. Recent Patents on Computer Science, 2008, 1(1):32-54.
[2]曹银花, 李林, 郜广军, 等. 动摄像机和动目标跟踪模式下的目标检测新方法[J]. 光学技术, 2005, 31(2):276-278.
[3]齐玉娟, 王延江, 李永平. 基于记忆的混合高斯背景建模[J]. 自动化学报, 2010, 36(11): 1520-1526.
[4]Kato J, Watanabe T, Joga S, et al. An HMM-based segmentation method for traffic monitoring movies [J].IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002, 24(9):1291-1296.
[5]于海南,赵保军.在低信噪比及背景干扰下红外图像点目标和面目标的检测[J].计量学报,2004,25(3):232-234.
[6]Ashraf E, Anup B. Robust Detection of Moving Objects by a Moving Observer on Planar Surfaces [C]//IEEE international Conference on Robotics and Automation. Nagoya, Aichi, Japan: IEEE,1995: 2347-2352.
[7]王梅, 屠大维, 周许超. SIFT 特征匹配和差分相乘融合的运动目标检测[J]. 光学精密工程, 2011, 19(4):892-899.
[8]David G L. Object recognition from local scale-invariant features [C] // ICCV'99: Proceedings of the International Conference on Computer Vision. Washington, DC: IEEE Computer Society, 1999, 2: 1150-1157.
[9]牛长锋, 陈登峰, 刘玉树. 基于SIFT 特征和粒子滤波的目标跟踪方法[J]. 机器人, 2010, 32(2): 241-247.
[10]Fischler M A, Bolles R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography [J]. Communications of the ACM, 1981, 24(6): 381-395.
[11]吴凤和. 基于计算机视觉测量技术的图像轮廓提取方法研究[J]. 计量学报,2007,28(1):18-22.