Abstract:Two important parameters, the sample frequency and twice sample frequency, is analyzed. The effects of these two parameters on the output of system is concluded based on the theoretical analysis and simulation. At the same time, the cause of these effects are analyzed and then put forward a method of how to select these two parameters. It provides a basis for a better use of twice sampling stochastic resonance in weak signal periodic detection.
郑堂,李世平,程双江,邬肖敏. 为检测微弱周期信号对二次采样随机共振相关参数的研究[J]. 计量学报, 2015, 36(3): 313-317.
ZHENG Tang,LI Shi-ping,CHENG Shuang-jiang,WU Xiao-min. The Research of Related Parameters in Twice Sampling Stochastic Resonance Used in Week Signal Detection. Acta Metrologica Sinica, 2015, 36(3): 313-317.
[1]Benzi R, Sutera A, Vulpiani A. The Mechanism of Stochastic Resonance[J]. Journal of Physics A: Mathematical and Theoretical,1981,14(11): 453-457.
[2]时培明,丁雪娟,韩东颖.基于变尺度频移带通随机共振的多频微弱信号检测方法[J].计量学报,2013,34(3):282-288.
[3]胡岗.随机力与非线性系统[M].上海:上海科技教育出版社,1994,
[4]杨祥龙.随机共振理论在弱信号检测中的应用研究[D].杭州:浙江大学,2003
[5]Jung P, Hnggi P. Amplification of small signal via stochastic resonance[J]. Phys Rev A, 1991,44(12): 8032-8042.
[6]Harmaer G P, Davis B R, Abbott D. A review of stochastic resonance: circuits and measurement[J]. IEEE Transactions on instrumentation and measurement, 2002,51(2): 299-309
[7]Dykman M I, Luchinsky D G, Mannella R, et al. Nonconventional Stochastic Resonance[J]. Journal of Statistical Physics,1993, 70(1/2): 479-499.
[8]刘沁雨.多阈值系统中的随机共振[D].南京:南京邮电大学,2011.
[9]冷永刚,王太勇.二次采样用于随机共振从强噪声中提取弱信号的数值研究[J].物理学报,2003,52(10):2432-2437.
[10]冷永刚,王太勇,郭焱,等.二次采样随机共振工程应用研究[J].中国机械工程,2004, 15(20):1847-1852.
[11]冷永刚,王太勇,秦旭达,等.二次采样随机共振频谱研究与应用初探[J].物理学报,2004, 53(3):717-723.
[12]冷永刚,王太勇,李瑞欣,等.变尺度随机共振用于电机故障的监测诊断[J].中国电机工程学报,2003,23(11):112-115.