Low Frequency Oscillatory Transients Detection Method Based on Optimization Window Function Modified S-Transform
JIANG Qingliu1, LIANG Chengbin1, CHEN Guanggui2, WANG Rongyu2, HE Qing3
1.College of Electrical Engineering, Guizhou University, Guiyang, Guizhou 550025, China
2.Guizhou Institute of Measurement and Testing, Guiyang, Guizhou 550025, China
3.Department of Electromagnetic, National Institute of Metrology, Beijing 100029, China
Abstract:Low-frequency oscillation transient is a common type of power quality disturbance in power system, directly affecting the safe and stable operation of power system. A low-frequency oscillation transient detection method based on an improved S-transform using an optimized window function is proposed. Firstly, the changing characteristics of the window function with detection frequency in time-frequency analysis algorithms are analyzed, identifying an optimized window function suitable for detecting low-frequency oscillation transients. This optimized window function is then utilized to construct an improved S-transform algorithm. Secondly, through the application of the convolution theorem, Fourier transform, and its inverse transform, a computational expression for the fast implementation of the improved S-transform algorithm is derived, resulting in a two-dimensional time-frequency matrix containing signal amplitude and phase information. The implementation process of the improved algorithm is provided. Finally, the improved algorithm is tested using power grid signals containing low-frequency oscillation transients. The algorithm demonstrates relatively optimal time-frequency energy concentration performance for low-frequency oscillation transients. In practical experiment, the detected disturbance center frequency is 600 Hz, consistent with the generation frequency of the disturbance, verifying the feasibility and effectiveness of the improved algorithm.
陈维兴, 崔朝臣, 李小菁, 等. 基于多种小波变换的一维卷积循环神经网络的风电机组轴承故障诊断[J]. 计量学报, 2021, 42(5): 615-622. CHEN W X, CUI Z C, LI X J, et al. Bearing Fault Diagnosis of Wind Turbine Based on Multi-wavelet-1 D Convolutional LSTM[J]. Acta Metrologica Sinica, 2021, 42(5): 615-622.
17
KHOKHAR S, ZIN M A A, MEMON A P, et al. A New Optimal Feature Selection Algorithm for Classification of Power Quality Disturbances Using Discrete Wavelet Transform and Probabilistic Neural Network[J]. Measurement, 2017, 95: 246-259.
22
许立武, 李开成, 罗奕, 等. 基于不完全 S 变换与梯度提升树的电能质量复合扰动识别[J]. 电力系统保护与控制, 2019, 47(6): 24-31. XU L W, LI K C, LUO Y, et al. Classification of Complex Power Quality Disturbances Dased on Incomplete S-transform and Gradient Boosting Decision Tree[J]. Power System Protection and Control, 2019, 47(6): 24-31.
21
VENKATESWARA REDDY M, SODHI R. A Modified S-transform and Random Forests-based Power Quality Assessment Framework[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(1): 78-89.
23
LIANG C B, TENG Z S, LI J M, et al. Improved S-transform for Time-Frequency Analysis for Power Quality Disturbances[J]. IEEE Transactions on Power Delivery, 2022, 37(4): 2942-2952.
9
陈正颖, 王黎明, 怡勇. 基于短时傅里叶变换的直流电晕无线电干扰激发电流计算[J]. 高电压技术, 2019, 45(6): 1866-1872. CHEN Z Y, WANG L M, YI Y. Computation of Radio Interference Excitation Current of DC Corona Based on Short-time Fourier Transform [J]. High Voltage Engineering, 2019, 45(6): 1866-1872.
10
郑海明, 姚鹏辉. 基于协相关性和傅里叶变换-差分吸收光谱法的臭氧浓度在线测量研究[J]. 计量学报, 2023, 44(2): 284-289. ZHENG H M, YAO P H. Research of On-line Monitoring of Ozone Concentration Based on Association Correlation and Differential Optical Absorption Spectroscopy-Fourier Transform[J]. Acta Metrologica Sinica, 2023, 44(2): 284-289.
13
LAADIAL K, SAHRAOUI M, CARDOSO A J M. On-line Fault Diagnosis of DC-link Electrolytic Capacitors in Boost Converters Using the STFT Technique[J]. IEEE Transactions on Power Electronics, 2021, 36(6): 6303-6312.
20
CUI C H, DUAN Y J, HU H L, et al. Detection and Classification of Multiple Power Quality Disturbances Using Stockwell Transform and Deep Learning[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-12.
18
THIRUMALA K, PRASAD M S, JAIN T, et al. Tunable-Q Wavelet Transform and Dual Multiclass SVM for Online Automatic Detection of Power Quality Disturbances[J]. IEEE Transactions on Smart Grid, 2018, 9(4): 3018-3028.
3
张鹏, 毕天姝. HVDC引起次同步振荡暂态扰动风险的机理分析[J]. 中国电机工程学报, 2016, 36(4): 961-968, 1178. ZHANG P, BI T S. Mechanism Analysis of Large Disturbance Risk of Subsynchronous Oscillation caused by HVDC[J]. Proceedings of the CSEE, 2016, 36(4): 961-968, 1178.
24
滕召胜, 王永, 李建闽, 等. 一种新的谐波时频分解方法—K-S分解[J]. 中国科学(技术科学), 2019, 49(2): 234-242. TENG Z S, WANG Y, LI J M, et al. A New Method of Harmonic Time-Frequency Decomposition: The K-S Decomposition[J]. Scientia Sinica (Technologica), 2019, 49(2): 234-242.
1
IEEE Recommended Practice for Power Quality Data Interchange Format (PQDIF):1159.3-2019[S]. 2019.
19
金海龙, 邬霞, 樊凤杰, 等. 基于GST-ECNN的运动想象脑电信号识别方法[J]. 计量学报, 2022, 43(10): 1341-1347. JIN H L, WU X, FAN F J, et al. Motor Imagery EEG Signal Recognition Method Based on GST-ECNN[J]. Acta Metrologica inica, 2022, 43(10): 1341-1347.
5
李艳, 林晓明, 赵宇明, 等. 基于改进mSDFT算法的谐波信号提取方法[J]. 计量学报, 2024, 45(10): 1435-1443. LI Y, LIN X M, ZHAO Y M, et al. A Harmonics Signal Extraction Method Based on Improved mSDFT Algorithm[J]. Acta Metrologica Sinica, 2024, 45(10): 1435-1443.
2
AZMAN S K, ISBEIH Y J, El MOURSI M S, et al. A Unified Online Deep Learning Prediction Model for Small Signal and Transient Stability[J]. IEEE Transactions on Power Systems, 2020, 35(6): 4585-4598.
7
BORKOWSKI J, MROCZKA J, MATUSIAK A, et al. Frequency Estimation in Interpolated Discrete Fourier Transform With Generalized Maximum Sidelobe Decay Windows for the Control of Power[J]. IEEE Transactions on Industrial Informatics, 2020, 17(3): 1614-1624.
12
方旭, 刘欣, 李琪, 等. 面向油品参数快速计量的高精度傅里叶近红外光谱仪[J]. 计量学报, 2024, 45(1): 103-111. FANG X, LIU X, LI Q, et al. High Precision Near Infrared Fourier Spectrometer for Rapid Measurement of Oil Parameters[J]. Acta Metrologica Sinica, 2024, 45(1): 103-111.
4
张立国, 张淑清, 李莎莎, 等. 电能质量扰动识别的不同时频分析方法研究[J]. 计量学报, 2017, 38(3): 345-350. ZHANG L G, ZHANG S Q, LI S S, et al. Study on the Detection and Classification of Power Quality Disturbances Using Difference Time-frequency Methods[J]. Acta Metrologica Sinica, 2017, 38(3): 345-350.
11
袁小平, 胡秀娟, 孙英洲, 等. 基于加窗傅里叶变换的弱电网阻抗测量算法[J]. 电力系统保护与控制, 2018, 46(10): 96-101. YUAN X P, HU X J, SUN Y Z, et al. A Weak Grid Impedance Detection Method Based on Windowed Fourier Transformation[J]. Power System Protection and Control, 2018, 46(10): 96-101.
14
MAQSOOD A, OSLEBO D, CORZINE K, et al. STFT Cluster Analysis for DC Pulsed Load Monitoring and Fault Detection on Naval Shipboard Power Systems[J]. IEEE Transactions on Transportation Electrification, 2020, 6(2): 821-831.
8
倪伟伦, 顾丹珍, 曹依烈, 等. 基于改进S变换的非稳态信号的电能计量方法研究[J]. 电测与仪表, 2024, 61(5): 175-181,224. NI W L, GU D Z, CAO Y L, et al. Research on Electric Energy Measurement Method Based on Improved S-transform for Unsteady Signal[J]. Electrical Measurement & Instrumentation, 2024, 61(5): 175-181,224.
6
LI L, CAI H, JIANG Q, et al. An Empirical Signal Separation Algorithm for Multicomponent Signals Based on Linear Time-Frequency Analysis[J]. Mechanical Systems and Signal Processing, 2019, 121: 791-809.
16
吴建章, 梅飞, 郑建勇, 等. 基于改进经验小波变换和 XGBoost 的电能质量复合扰动分类[J]. 电工技术学报, 2022, 37(1): 232-243,253. WU J Z, MEI F, ZHENG J Y, et al. Recognition of Multiple Power Quality Disturbances Based on Modified Empirical Wavelet Transform and XGBoost[J]. Transactions of China Electrotechnical Society, 2022, 37(1): 232-243,253.