2025年04月16日 星期三 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2024, Vol. 45 Issue (11): 1607-1614    DOI: 10.3969/j.issn.1000-1158.2024.11.04
  几何量计量 本期目录 | 过刊浏览 | 高级检索 |
基于深度学习的水域实例分割尾矿库干滩长度测量
孙叶青1,陈洪飞2,童仁园1
1.中国计量大学,浙江杭州310018
2.浙江省水利河口研究院,浙江杭州310020
Tailings Pond Dry Beach Length Measurement Based on Deep Learning Water Instance Segmentation
SUN Yeqing1,CHEN Hongfei2,TONG Renyuan1
1. China Jiliang University, Hangzhou, Zhejiang 310018, China
2. Zhejiang Institute of Hydraulics and Estuary, Hangzhou, Zhejiang 310020, China
全文: PDF (840 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 提出了基于YOLOv8的水域实例分割方法,实现了在实时视频流下快速、高效、准确的尾矿库干滩长度测量。首先,完成一份高质量水域实例分割的COCO数据集;其次,分析主流深度学习实例分割算法,选用YOLOv8模型训练出高效识别水线并输出图像坐标;最后,标定相机内外参数,应用相机成像原理,在尾矿库尾部安装监控摄像头,预测出干滩长度。实验证明:此模型不仅能够准确预测出干滩长度,并且对不同尾矿库水域边界分割有较好的稳定性;对实时视频流模式下的野外非接触式测量具有较好的效果,误差控制在2%以内。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙叶青
陈洪飞
童仁园
关键词 长度测量水域实例分割干滩长度尾矿库COCO数据集YOLOv8算法实时视频流    
Abstract:A method based on YOLOv8 for water instance segmentation has been proposed, achieving rapid, efficient, and accurate measurement of the dry beach length of tailings ponds under real-time video streams. Firstly, a high-quality water instance segmentation COCO dataset is completed. Secondly, mainstream deep learning instance segmentation algorithms are analyzed, and the YOLOv8 model is chosen to efficiently recognize the waterline and output image coordinates. Finally, the internal and external parameters of the camera are calibrated. By applying the principles of camera imaging and installing surveillance cameras at the end of the tailings pond, the dry beach length is predicted. Experiments prove that this model can not only accurately predict the dry beach length but also has good stability in segmenting the water boundaries of different tailings ponds. It has a good effect on non-contact measurement in the field under real-time video stream mode, with an error controlled within 2%.
Key wordslength measurement    water area instance segmentation    dry beach length    tailings pond    COCO dataset    YOLOv8 algorithm    real time video streaming
收稿日期: 2023-09-24      发布日期: 2024-11-29
PACS:  TB92  
基金资助:国家重点研发计划课题(2022YFC3003403);浙江省教育厅项目(Y201942369)
作者简介: 孙叶青(1981-),浙江杭州人,中国计量大学高级工程师,主要从事深度学习,大数据分析的研究。Email: syq@cjlu.edu.cn
引用本文:   
孙叶青,陈洪飞,童仁园. 基于深度学习的水域实例分割尾矿库干滩长度测量[J]. 计量学报, 2024, 45(11): 1607-1614.
SUN Yeqing,CHEN Hongfei,TONG Renyuan. Tailings Pond Dry Beach Length Measurement Based on Deep Learning Water Instance Segmentation. Acta Metrologica Sinica, 2024, 45(11): 1607-1614.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2024.11.04     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2024/V45/I11/1607
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn