2025年04月06日 星期日 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2024, Vol. 45 Issue (9): 1384-1393    DOI: 10.3969/j.issn.1000-1158.2024.09.17
  电磁学计量 本期目录 | 过刊浏览 | 高级检索 |
基于QM-DBSCAN与BiLSTM的风电机组异常工况预警研究
马良玉1,2,梁书源1,程东炎1,耿妍竹1,段新会1,3
1.华北电力大学自动化系,河北保定071003
2.保定市综合能源系统状态检测与优化调控重点实验室,河北保定071003
3.保定华仿科技股份有限公司,河北保定071000
Research on Early Warning of Abnormal Working Conditions of Wind Turbine Based on QM-DBSCAN and BiLSTM
MA Liangyu1,2,LIANG Shuyuan1,CHENG Dongyan1,GENG Yanzhu1,DUAN Xinhui1,3
1.Department of Automation, North China Electric Power University, Baoding, Hebei 071003, China
2.Baoding Key Laboratory of State Detection and Optimization for Integrated Energy System, Baoding, Hebei 071003, China
3.Baoding SinoSimu Technology Co.Ltd, Baoding, Hebei 071000, China
全文: PDF (864 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 提出一种基于四分位(QM)-具有噪声的基于密度聚类法(DBSCAN)与双向长短期记忆网络(BiLSTM)的风电机组故障预警方法。首先,针对风速-功率图中限功率点难以清洗完全的问题,提出利用QM与DBSCAN联合来对建模运行数据进行预处理;其次,通过分析风电机组运行原理,并结合轻量梯度提升机(LightGBM)特征选择法确定风电机组正常工况预测模型的输入输出参数,并基于BiLSTM建立了高精度的风电机组正常性能预测模型;之后,利用滑窗算法构建了风电机组状态性能评价指标,并通过统计学区间估计法确定指标阈值;最后,采用风电机组真实故障数据,开展风电机组异常工况预警实验,验证了方法的有效性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
马良玉
梁书源
程东炎
耿妍竹
段新会
关键词 电学计量风电机组故障预警四分位法DBSCANBiLSTM滑窗算法    
Abstract:A wind turbine fault warning method based on quartile method(QM)-density-based spatial clustering of applications with noise(DBSCAN) and Bi-directional long and short-term memory network (BiLSTM) is proposed.Firstly, in view of the difficulty of cleaning the power limit point in the wind speed-power diagram, the combination of QM and DBSCAN is proposed to preprocess the modeling operation data. secondly, by analyzing the operation principle of wind turbine and determining the input and output parameters of the normal working condition prediction model of wind turbine combined with LightGBM feature selection method, a high-precision normal performance prediction model of wind turbine is established based on BiLSTM.Then, the state performance index of the fan is determined by the sliding window algorithm, and the index threshold is determined by statistical interval estimation method.Finally, the real fault data of the fan is used to carry out the early warning experiment of the abnormal working condition of the whole wind turbine, which verifies the effectiveness of the method.
Key wordselectrical measurement    wind turbine    fault warning    quartile method    DBSCAN    BiLSTM    sliding window algorithm
收稿日期: 2023-05-31      发布日期: 2024-09-26
PACS:  TB971  
基金资助:国家自然科学基金(61973117);河北省中央引导地方科技发展资金(226Z2103G)
作者简介: 马良玉(1972-),男,河北井陉人,华北电力大学教授,从事智能技术在电站建模、优化控制与故障诊断中的应用等方面的研究。Email:maliangyu@ncepu.edu.cn
引用本文:   
马良玉,梁书源,程东炎,耿妍竹,段新会. 基于QM-DBSCAN与BiLSTM的风电机组异常工况预警研究[J]. 计量学报, 2024, 45(9): 1384-1393.
MA Liangyu,LIANG Shuyuan,CHENG Dongyan,GENG Yanzhu,DUAN Xinhui. Research on Early Warning of Abnormal Working Conditions of Wind Turbine Based on QM-DBSCAN and BiLSTM. Acta Metrologica Sinica, 2024, 45(9): 1384-1393.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2024.09.17     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2024/V45/I9/1384
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn