2025年04月16日 星期三 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2024, Vol. 45 Issue (9): 1249-1256    DOI: 10.3969/j.issn.1000-1158.2024.09.01
  热学计量 本期目录 | 过刊浏览 | 高级检索 |
微波谐振法应用于高温气体声学温度计的研究
朱章睿1,2,邢力2,冯晓娟2,张金涛2,孙坚1
1.中国计量大学机电工程学院,浙江杭州310018
2.中国计量科学研究院热工计量科学研究所,北京100029
Application of Microwave Resonance Method in High Temperature Acoustic Gas Thermometer
ZHU Zhangrui1,2,XING Li2,FENG Xiaojuan2,ZHANG Jintao2,SUN Jian1
1. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. Division of Thermophysics, National Institute of Metrology, Beijing 100029, China
全文: PDF (764 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 高于335K的热力学温度T与国际温标ITS-90温度(T90)之间的差异T-T90,是当前国际温度计量前沿研究的重点与难点。基于气体声速获得热力学温度的方法是该温区具有测量不确定度优势的方法,气体声速可通过声学共鸣法测得的声学共振频率和腔体尺寸获得。微波谐振法是高温区实时、原位获得腔体尺寸和热膨胀性的技术路线。通过优化高温气体声学热力学温度测量装置,提升温度和压力稳定性;采用自研的耐高温微波传感器,测量了335K至493K圆柱腔内的微波谐振频率,相对标准偏差为(2~13)×10-8;通过微波谐振频率获得了腔体尺寸随温度的变化关系,验证了几何尺寸的稳定性;同时实时获得圆柱腔内气体的折射率和压力,用于分析流动气路产生的压差。研究结果可为精密测定335K以上T-T90提供重要基础。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱章睿
邢力
冯晓娟
张金涛
孙坚
关键词 温度计量气体声学温度计热力学温度微波谐振法热膨胀折射率压力    
Abstract:The difference between the thermodynamic temperature T above 335K and the International Temperature Scale ITS-90 temperature(T90) T-T90, is currently the focus and difficulty of frontier research in international temperature metrology. Acoustic gas thermometry, based on the determination of theremperature from the speed of sound in gases, is one of the promising methods for this temperature range. The speed of sound in gases could be measured from acoustic resonant frequency and the inner dimension of the cavity. Microwave resonance method is a technical route for real-time and in-situ measurement of cavity size and thermal expansion at high-temperature. We optimized the high-temperature acoustic gas thermometry system to improve the temperature and pressure stability. Homemade high-temperature microwave cable and sensor were used for the measurement of microwave resonant frequencies in a cylindrical cavity from 335K to 493K with a relative standard deviation of (2~13)×10-8. The variation of the cavity size with temperature was obtained through microwave resonance frequencies. The stability of geometric of the cylindrical cavity was acceptable. Then the refractive index and pressure of the gas inside the cylindrical cavity were determined for analyzing the pressure difference from flowing gas. These results are helpful for future determination of T-T90 above 335K with low uncertainties.
Key wordstemperature measurement;acoustic gas thermometry;thermodynamic temperature    microwave resonance method;thermal expansion    refractive index    pressure
收稿日期: 2024-04-23      发布日期: 2024-09-26
PACS:  TB942  
基金资助:国家重点研发计划(2021YFF0603804);国家自然科学基金(52176170)
通讯作者: 冯晓娟(1983-),山西永济人,中国计量科学研究院研究员,从事温度计量研究工作。Email:fengxj@nim.ac.cn     E-mail: fengxj@nim.ac.cn
作者简介: 朱章睿(1998-),浙江金华人,中国计量大学机电工程学院研究生,研究方向为气体声学法测量热力学温度。Email:849081468@qq.com
引用本文:   
朱章睿,邢力,冯晓娟,张金涛,孙坚. 微波谐振法应用于高温气体声学温度计的研究[J]. 计量学报, 2024, 45(9): 1249-1256.
ZHU Zhangrui,XING Li,FENG Xiaojuan,ZHANG Jintao,SUN Jian. Application of Microwave Resonance Method in High Temperature Acoustic Gas Thermometer. Acta Metrologica Sinica, 2024, 45(9): 1249-1256.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2024.09.01     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2024/V45/I9/1249
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn