2025年05月12日 星期一 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2024, Vol. 45 Issue (6): 806-818    DOI: 10.3969/j.issn.1000-1158.2024.06.05
  光学计量 本期目录 | 过刊浏览 | 高级检索 |
汽车轮毂表面缺陷检测技术分析与装置设计
刘福才1,2,张震宇1,徐继龙1,2,郑宏伟1,刘阳3
1.燕山大学智能控制系统与智能装备教育部工程研究中心,河北秦皇岛066004
2.河北省高端装备产业技术研究院,河北秦皇岛066004
3.中信戴卡股份有限公司,河北秦皇岛066004
Technology Analysis and Device Design for Automobile Wheel Hub Surface Defect Detection
LIU Fucai1,2,ZHANG Zhenyu1,XU Jilong1,2,ZHENG Hongwei1,LIU Yang3
1. Engineering Research Center of the Ministry of Education for Intelligent Control System and Intelligent Equipment, Yanshan University, Qinhuangdao, Hebei 066004, China
2. Hebei High-end Equipment Industry Technology Research Institute, Qinhuangdao, Hebei 066004, China
3. CITIC Dicastal Co., Ltd., Qinhuangdao, Hebei 066004, China
全文: PDF (797 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 机器视觉作为代替人工检测轮毂表面缺陷的重要手段,是目前该领域的主要研究方向,因此针对汽车轮毂表面缺陷检测技术的研究现状进行了综述与分析。首先,从轮毂表面缺陷的类别和人工检测流程入手,阐述了基于机器视觉的轮毂表面缺陷检测技术的要求和难点。其次,分析了基于机器视觉的智能检测算法的发展历程,包括传统的机器视觉方法在缺陷图像预处理、缺陷定位和特征提取、缺陷分类识别中的应用;卷积神经网络(CNN)等深度学习方法在缺陷检测、分割以及其他方面的应用。最后,介绍了现有轮毂型号识别装置、轮毂缺陷X射线图像采集装置、轮毂表面缺陷图像采集装置,并在分析当前基于机器视觉的智能检测装置在实际应用中的局限性及需要解决的若干关键技术问题的基础上,提出了3种智能检测实验装置设计方案,为全自动快速检测装置的研制与性能提升提供理论与技术支撑。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘福才
张震宇
徐继龙
郑宏伟
刘阳
关键词 机器视觉汽车轮毂表面缺陷检测深度学习智能检测装置    
Abstract:Machine vision, as an important method to replace manual detection of wheel hub surface defects, is currently the main research direction in this field. Therefore, a summary and analysis of the research status of surface defect detection technology for automotive hubs is conducted. Firstly, starting with the categories of wheel surface defects and manual detection process, the requirements and difficulties of machine vision-based wheel surface defect detection technology are expounded. Then, the development of intelligent detection algorithms based on machine vision is analyzed, including the application of traditional machine vision methods in defect image preprocessing, defect location and feature extraction, defect classification and recognition, also including the application of deep learning methods such as convolutional neural networks (CNN) in defect detection, segmentation, and other applications. Finally, the existing hub type recognition device, hub defect X-ray image acquisition device, hub surface defect image acquisition device are introduced. On the basis of analyzing the limitations and key technical issues that need to be solved in practical applications of current machine vision based intelligent detection devices, three kinds of intelligent detection experimental device design schemes are proposed. It provides theoretical and technical support for the development and performance improvement of automatic rapid detection device.
Key wordsmachine vision;automobile wheel    surface defect detection    deep learning    intelligent detection device
收稿日期: 2023-11-08      发布日期: 2024-06-06
PACS:  TB96  
基金资助:河北省自然科学基金(F202220304);河北省高端装备产业技术研究中心学科交叉技术创新重点项目(H20201103)
作者简介: 刘福才(1966-),黑龙江勃利人,燕山大学教授,主要从事空间机构运动特性分析与控制。Email:lfc@ysu.edu.cn
引用本文:   
刘福才,张震宇,徐继龙,郑宏伟,刘阳. 汽车轮毂表面缺陷检测技术分析与装置设计[J]. 计量学报, 2024, 45(6): 806-818.
LIU Fucai,ZHANG Zhenyu,XU Jilong,ZHENG Hongwei,LIU Yang. Technology Analysis and Device Design for Automobile Wheel Hub Surface Defect Detection. Acta Metrologica Sinica, 2024, 45(6): 806-818.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2024.06.05     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2024/V45/I6/806
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn