2025年04月09日 星期三 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2024, Vol. 45 Issue (5): 738-746    DOI: 10.3969/j.issn.1000-1158.2024.05.18
  无线电、时间频率计量 本期目录 | 过刊浏览 | 高级检索 |
基于四维张量特征分解的风电机组轴承故障缺失数据恢复方法研究
时培明1,孙航璇1,许学方1,韩东颖2
1. 燕山大学 河北省测试计量技术及仪器重点实验室,河北 秦皇岛 066004
2. 燕山大学 车辆与能源学院,河北 秦皇岛 066004
A Method for Recovering Missing Data of Bearing Faults of Wind Turbine Generator Based on Four-dimensional Tensor Model Characteristic Decomposition
SHI Peiming1,SUN Hangxuan1,XU Xuefang1,HAN Dongying2
1. Key Laboratory of Measurement Tech and Instrument of Hebei Province, Yanshan University, Qinhuangdao, Hebei  066004,China
2. School of Vehicles and Energy, Yanshan University, Qinhuangdao, Hebei 066004,China
全文: PDF (670 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对风电机组轴承故障信息采集过程中数据缺失导致故障类型无法识别问题,提出了一种基于四维张量模型特征分解恢复缺失数据的方法。首先,基于转速、时窗、经验模态分解和时间4个维度构建四维张量;其次,通过加权优化算法实现张量填充,修补故障数据的缺失值;然后,对张量进行Tucker分解得到核心张量及因子矩阵;最后,基于梯度优化算法进行迭代优化得到最终核心张量及因子矩阵,并利用二者对四维张量进行重构得到恢复数据。采用实验数据和实际数据来验证提出方法的有效性和可靠性。结果表明:两组恢复数据的RMSE值分别为0.3169和0.0291,远小于4种对比方法的RMSE值。利用双稳态随机共振对2组恢复数据进行故障特征提取,信噪比显著提高,分别为-13.2647和-15.5212,进一步验证提出方法的准确性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
时培明
孙航璇
许学方
韩东颖
关键词 信息采集数据恢复;轴承故障诊断张量分解缺失值数据特征提取振动测量;风电机组    
Abstract:To solve the problem that the fault type cannot be identified due to missing data in the process of collecting fault information of wind turbine bearing, a method based on four-dimensional tensor model feature decomposition is proposed to recover missing data. Firstly, the fourth order tensor of vibration fault data is constructed based on the four dimensions of rotational speed, time-domain window, empirical mode decomposition and time.Secondly, the factor matrix is obtained by Tucker decomposition of the tensor. Then, tensor filling is realized by weighted optimization algorithm to recover the missing values of bearing fault data.Finally, the core tensor and factor matrix are obtained iteratively based on the gradient optimization algorithm, and the four-dimensional tensor is reconstructed to get the recovered data. The validity and reliability of the proposed method are verified by experimental and practical data. The results show that the RMSE values of the two groups of recovered data are 0.3169 and 0.0291, which are much lower than the RMSE values of the four comparison methods. By using BSR to extract fault features from two groups of recovered data, the signal-to-noise ratio is significantly improved to -13.2647 and -15.5212, respectively, which further verifies the accuracy of the proposed method.
Key wordsinformation collection    data restoration    fault diagnosis of bearing    tensor decomposition    missing value data    characteristic decomposition    vibration measurement;wind turbine generator
收稿日期: 2023-07-13      发布日期: 2024-05-23
PACS:  TB973  
基金资助:河北省自然科学基金(E2020203147,E2022203093);中央引导地方科技发展资金(216Z4301G)
作者简介: 时培明(1979-),男,黑龙江延寿人,主要研究方向为智能信息处理和设备监测诊断。Email: spm@ysu.edu.cn
引用本文:   
时培明,孙航璇,许学方,韩东颖. 基于四维张量特征分解的风电机组轴承故障缺失数据恢复方法研究[J]. 计量学报, 2024, 45(5): 738-746.
SHI Peiming,SUN Hangxuan,XU Xuefang,HAN Dongying. A Method for Recovering Missing Data of Bearing Faults of Wind Turbine Generator Based on Four-dimensional Tensor Model Characteristic Decomposition. Acta Metrologica Sinica, 2024, 45(5): 738-746.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2024.05.18     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2024/V45/I5/738
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn