Abstract:In order to realize high-precision micro-displacement detection, the nitrogen-vacancy (NV) color center magnetometer is taken as the basis, and testing is conducted using the quantum spin regulation principle and uniform variation of spatial gradient magnetic field. Firstly, the gradient magnetic field is constructed with uniform variation by the permanent magnet, and the correlation between the magnetic field gradient and displacement is obtained. Secondly, the Ramsay sequence parameters required in the experiment is determined by testing the NV color center optical detection magnetic resonance (ODMR) frequency points and determining the quantum flip period corresponding to the Rabi oscillation in the time domain. Finally, the correlation of fluorescence intensity and magnetic field gradient is completed based on the Ramsey magnetic field measurement principle. The relationship between fluorescence intensity and micro-displacement change is obtained, and the micro-displacement measurement is realized. The minimum resolution of displacement is about 104nm.
李中豪,刘雨奇,张浩,刘鑫,张家璇. 量子自旋调控的微位移检测系统设计与测量[J]. 计量学报, 2024, 45(4): 465-470.
LI Zhonghao,LIU Yuqi,ZHANG Hao,LIU Xin,ZHANG Jiaxuan. Design and Measurement of Micro-displacement Detection System Based on Solid State Quantum Spin Regulation. Acta Metrologica Sinica, 2024, 45(4): 465-470.
ZHANG P, YAN Z D, ZHAO J T, et al. Design of Null-Detector for DC Resistance Bridge Based on SQUID [J]. Acta Metrologica Sinica, 2021, 42(10): 1349-1353.
BARRY J F, SCHLOSS J M, BAUCH E, et al. Sensitivity optimization for NV-diamond magnetometry [J]. Reviews of Modern Physics, 2020, 92(1): 015004.
XIN L, FENG X J, ZHANG J T. AnaIysis 0f Continuous Temperature Measurement Sensitivity Based on Nitrogen-Vacancy Centers in Diamond [J]. Acta Metrologica Sinica, 2023, 44(5): 707-713.
[6]
CHEN B, HOU X F, GE F F, et al. Calibration-Free Vector Magnetometry Using Nitrogen-Vacancy Center in Diamond Integrated with Optical Vortex Beam [J]. Nano Letters, 2020, 20(11): 8267-8272.
[7]
SCHLOSS J M, BARRY J F, TURNER M J, et al. Simultaneous Broadband Vector Magnetometry Using Solid-State Spins [J]. Physical Review Applied, 2018, 10(3): 034044.
[9]
ZHUANG M, HUANG J, LEE C. Simultaneous Measurement of DC and AC Magnetic Fields at the Heisenberg Limit [J]. Physical Review Applied, 2020, 13(4): 044049.
JENSEN K, LEEFER N, JARMOLA A, et al. Cavity-Enhanced Room-Temperature Magnetometry Using Absorption by Nitrogen-Vacancy Centers in Diamond [J]. Physical Review Letters, 2014, 112(16): 160802.
[8]
WEGGLER T, GANSLMAYER C, FRANK F, et al. Determination of the Three-Dimensional Magnetic Field Vector Orientation with Nitrogen Vacany Centers in Diamond [J]. Nano Letters, 2020, 20(5): 2980-2985.
[27]
RATHNAKARA V K K. Quantum Sensing with NV Centers in Diamond [D]. Gottingen: George-August-University of Gttingen, 2019.
BALASUBRAMANIAN G, CHAN I Y, KOLESOV R, et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions [J]. Nature, 2008, 455(7213): 648-651.
[12]
ZHANG C, SHAGIEVA F, WIDMANN M, et al. Diamond Magnetometry and Gradiometry Towards Subpicotesla DC Field Measurement [J]. Physical Review Applied, 2021, 15(6): 064075.
[13]
OON J T, TANG J S, HART C A, et al. Ramsey envelope modulation in NV diamond magnetometry [J]. Physical Review B, 2022, 106(5): 054110.
[15]
CHI F, ZHU Y, ZHANG Z P, et al. Environment Compensation Technologies in Dual-Frequency Laser Interferometer Measurement System [J]. Chinese Journal of Lasers, 2014, 41(4): 0408004.
[17]
ACOSTA V M, JENSEN K, SANTORI C, et al. Electromagnetically Induced Transparency in a Diamond Spin Ensemble Enables All-Optical Electromagnetic Field Sensing [J]. Physical Review Letters, 2013, 110(21): 213605.
[18]
TAYLOR J M, CAPPELLARO P, CHILDRESS L, et al. High-sensitivity diamond magnetometer with nanoscale resolution [J]. Nature Physics, 2008, 4(10): 810-816.
WANG R K, ZUO H F, L M. Analytical Calculation and Simulation for Magnetic Field Distribution of Ring Magnet[J]. Aeronautical Computing Technique, 2011, 41(5): 19-23.
[21]
DRAU A, LESIK M, RONDIN L, et al. Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity [J]. Physical Review B, 2011, 84(19): 195204.
[22]
PHAM L M. Magnetic field sensing with nitrogen-vacancy color centers in diamond [D]. Cambridge: Harvard University, 2013.
CUI F Y. Quantum-inspired Collaborative Edge Filtering of Electron Microscope Images [J]. Acta Metrologica Sinica, 2022, 43(8): 1027-1035.
[11]
BALASUBRAMANIAN P, OSTERKAMP C, CHEN Y, et al. DC Magnetometry with Engineered Nitrogen-Vacancy Spin Ensembles in Diamond [J]. Nano Letters, 2019, 19(9): 6681-6686.
[20]
RONDIN L, TETIENNE J P, HINGANT T, et al. Magnetometry with nitrogen-vacancy defects in diamond [J]. Reports on Progress in Physics, 2014, 77(5): 056503.
[24]
DOHERTY M W, DOLDE F, FEDDER H, et al. Theory of the ground-state spin of the NV center in diamond [J]. Physical Review B, 2012, 85(20): 205203.
[26]
ACOSTA V M, BAUCH E, LEDBETTER M P, et al. Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond [J]. Physical Review Letters, 2010, 104(7): 070801.
FENG Y Y, LI Z H, ZHANG Y, et al. Optimization of optical control of nitrogen vacancy centers in solid diamond [J]. Acta Physica Sinica, 2020, 69(14): 147601.
[14]
CHENG F, FAN K C. Linear diffraction grating interferometer with high alignment tolerance and high accuracy [J]. Applied Optics, 2011, 50(22): 4550-4556.
[16]
DUMEIGE Y, CHIPAUX M, JACQUES V, et al. Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity [J]. Physical Review B, 2013, 87(15): 155202.
WEGGLER T, GANSLMAYER C, FRANK F, et al. Determination of the Three-Dimensional Magnetic Field Vector Orientation with Nitrogen Vacany Centers in Diamond [J]. Nano Letters, 2020, 20(5): 2980-2985.
[25]
DOLDE F, FEDDER H, DOHERTY M W, et al. Electric-field sensing using single diamond spins [J]. Nature Physics, 2011, 7(6): 459-463.