Abstract:Basic principles of ultra-stable lasers and Pound-Drever-Hall(PDH)method are introduced. Additionally, methods of reducing noises, such as noises from vibration, temperature perturbation, air turbulence and etc. are discussed. The applications of ultra-stable lasers, especially the application of ultra-stable lasers to achieve the ultra-stable microwave source are described. Finally, an ultra-stable laser system with parameters for an ultra-stable microwave source is presented.
[1] Rosenband T, et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place [J]. Science, 2008, 319(5871): 1808-1812.
[2] Ludlow A D, et al. Sr lattice clock at 1×10-16 fractional uncertainty by remote optical evaluation with a Ca clock [J]. Science, 2008, 319(5871): 1805-1808.
[3] Schneider T, Peik E, Tamm C. Sub-Hertz optical frequency comparisons between two trapped 171Yb+ ions [J]. Phys Rev Lett, 2005, 94(23): 230801.
[4] Wang Y H, et al. Improved absolute frequency measurement of the 115In+ 5s2 1S0-5s5p 3P0 narrowline transition: progress towards an optical frequency standard [J]. Laser Phys, 2007, 17(7): 1017-1024.
[5] Udem Th, et al. Phase-Coherent Measurement of the Hydrogen 1S-2S Transition Frequency with an Optical Frequency Interval Divider Chain [J]. Phys Rev Lett, 1997, 79(14): 2646-2649.
[6] Salomon C, Hils D, Hall J L. Laser stabilization at the millihertz level [J]. J. Opt. Soc. Am. B, 1988, 5(8): 1576-1587.
[7] Fox R W, Oates C W, Hollberg L W. Stabilizing diode lasers to high-finesse cavities [J]. Experimental Methods in the Physical Sciences, 2007,40: 1-46.
[8] Bergquist J C, Itano W M, Wineland D J. Laser stabilization to a single ion [M]. North Holland, Amsterdam:School of Physics, E. Fermi Course, 1994,259-276.
[9] Wineland D J, et al. Proceedings of the Fourth Symposium in Frequency Standards and Metrology [M].Berlin : A. De Marchi,(Springer-Verlag), 1989,71-77.
[10] Zhao Y N, et al. A vibration-insensitive optical cavity and absolute determination of its ultrahigh stability [J]. physics optics, 2009, 17(4): 8970-8982.
[11] Notcutt M, et al. Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity [J]. Optics Letters, 2005, 30(14): 1815-1817.
[12] Li Y, et al. Towards an indium ion optical clock [C]//22nd International Conference on Atomic Physics, Cairns, Australia, 2010, 261.
[13] Young B C, et al. Visible Lasers with Subhertz Linewidths [J]. Phys Rev Lett, 1999, 82(19): 3799-3802.
[14] Nevsky A Y, et al. A Nd:YAG Laser with short-term frequency stability at the Hertz-level [J]. Optics Communications, 2002, 210(1-2): 91-100.
[15] Webster S A, Oxborrow M, Gill P. Subhertz-linewidth Nd:YAG laser [J]. Optics Letters, 2004, 29(13): 1497-1499.
[16] Millo J, et al. Ultra-low noise microwave generation with fiber-based optical frequency comb and application to atomic fountain clock [J]. Applied Physics Letters, 2009, 94: 141105- 141107.
[17] Dzuba V A, Flambaum V V, Webb J K. Space-Time Variation of Physical Constants and Relativistic Corrections in Atoms [J]. Phys Rev Lett, 1999, 82(5): 888-891.
[18] Karshenboim S G. Some possibilities for laboratory searches for variations of fundamental constants [J]. Can J Phys, 2000, 78(7): 639-677.
[19] Hawking S W, Israel W. 300 Years of Gravitation [M]. Cambridge: Cambridge University, 1987, 330.
[20] Shoemaker D, et al. Noise behavior of the Garching 30-meter prototype gravitational-wave detector [J]. Phys Rev D, 1988, 38(2): 423-432.
[21] Millo J, et al. Ultra-low-noise microwave extraction from fiber-based optical frequency comb [J]. Optical Letters, 2009, 34(23): 3707-3709.
[22] Telle H R, Lipphardt B, Stenger J. Kerr-lens mode-locked lasers as transfer oscillators for optical frequency measurements [J]. Appl Phys B, 2002, 74(1): 1-6.