2025年05月03日 星期六 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2023, Vol. 44 Issue (9): 1383-1389    DOI: 10.3969/j.issn.1000-1158.2023.09.10
  光学计量 本期目录 | 过刊浏览 | 高级检索 |
基于归一化注意力机制的特征自适应融合目标跟踪算法
张立国1,2,章玉鹏1,2,金梅1,2,张升1,2,耿星硕1,2
1.燕山大学河北省测试计量技术与仪器重点实验室,河北 秦皇岛 066004
2.燕山大学电气工程学院,河北 秦皇岛 066004
Target Tracking Algorithm Based on Normalized Attention Mechanism with Feature Adaptive Fusion
ZHANG Li-guo1,2,ZHANG Yu-peng1,2,JIN Mei1,2,ZHANG Sheng1,2,GENG Xing-shuo1,2
1. Hebei Key Laboratory of Measurement Technology and Instrument, Yanshan University,
Qinhuangdao, Hebei 066004, China
2.School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
全文: PDF (659 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对快速运动目标跟踪时图像的形变和低分辨率等问题,基于当前的孪生网络,提出一种基于归一化注意力机制的特征自适应融合目标跟踪算法。首先,通过轻量级的注意力机制抑制不太明显的权重,对注意力模块施加权重稀疏惩罚,并对主干网络最后4个特征层进行路径增强;其次,为捕捉在线跟踪过程中目标的外观变化,提升算法鲁棒性,提出了一种插件式的模板在线更新方法;最后,利用回归增强分类的方法完成对目标的跟踪。实验结果表明:该算法在OTB100,UAV123两个挑战性数据集上分别取得了63.3%和59.5%的较高成功率;同时,在外界光照变化、图像背景复杂、目标平面内旋转时,算法具有较强的鲁棒性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张立国
章玉鹏
金梅
张升
耿星硕
关键词 计量学;目标跟踪算法;归一化注意力机制;孪生网络;路径增强;机器视觉图像处理    
Abstract:To solve the difficult problems of image deformation and low resolution in fast moving target tracking. A feature-adaptive fusion target tracking algorithm based on a normalised attention mechanism is proposed based on current siamese networks. Firstly, the less obvious weights are suppressed by a lightweight attention mechanism that imposes a weight sparsity penalty on the attention module. While a path enhancement method is proposed, path strengthening is applied to the last four feature layers of the backbone. Secondly, a plug-in template online update method is proposed in order to capture changes in the appearance of the target during online tracking and improve the robustness of the algorithm. Finally, a regression-enhanced classification method is used to complete the tracking of the target. The experimental results show that the proposed algorithm achieves high success rates of 63.3% and 59.5% on two challenging datasets, OTB100,UAV123, respectively. Also, the algorithm has strong robustness when the illumination changes, the image background is complex and the target is rotated in-plane.
Key wordsmetrology    target tracking algorithm    normalized lightweight attention mechanism    siamese network    path strengthening    machine vision    image processing
收稿日期: 2022-04-27      发布日期: 2023-09-21
PACS:  TB96  
基金资助:河北省科学技术研究与发展计划科技支撑计划(20310302D);河北省中央引导地方专项(199477141G)
作者简介: 张立国(1978-),河北秦皇岛人,燕山大学副教授,主要从事机器视觉、故障诊断、虚拟现实方面的研究。 Email:zlgtime@163.com
引用本文:   
张立国,章玉鹏,金梅,张升,耿星硕. 基于归一化注意力机制的特征自适应融合目标跟踪算法[J]. 计量学报, 2023, 44(9): 1383-1389.
ZHANG Li-guo,ZHANG Yu-peng,JIN Mei,ZHANG Sheng,GENG Xing-shuo. Target Tracking Algorithm Based on Normalized Attention Mechanism with Feature Adaptive Fusion. Acta Metrologica Sinica, 2023, 44(9): 1383-1389.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2023.09.10     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2023/V44/I9/1383
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn