Abstract:As to the complex surface profile error evaluation is an involved nonlinear optimization problem,using improved particle swarm optimization algorithm combined with the method of subdivision surface and successive approximation,the accuracy calculation of complex surface profile error and the visualization of evaluation result are realized.After the theoretical surface is fitted by double cubic B-spline surface,the mathematical model of surface profile error is created under the minimum condition rule.With the help of subdivision surface and successive approximation,the minimum distance between measuring points and surface is obtained.Based on the analysis of basic particle swarm optimization algorithm,nonlinear dynamic inertial weight factor and hybrid operator are introduced to improve the efficiency and accuracy.Taking VRML as the 3D displaying platform and Java Applet as the controlling core,the surface profile error evaluation is visualized and networked.
张小萍, 周圣铧, 王君泽. 基于改进粒子群算法的复杂曲面轮廓度误差评定及可视化[J]. 计量学报, 2013, 34(1): 16-21.
ZHANG Xiao-ping, ZHOU Sheng-hua, WANG Jun-ze. Profile Error Evaluation of the Surface Based on Improved Particle Swarm Optimization and Its Visualization. Acta Metrologica Sinica, 2013, 34(1): 16-21.
[1] 甘永立.形状和位置误差检测[M].北京:国防工业出版社,1995.
[2] 郭慧,林大钧.基于微粒群算法的复杂曲面轮廓度误差计算[J].东华大学学报(自然科学版),2008,34(3):274-277.
[3] 王伯平,曾建潮.一种自调整的空间面轮廓度误差的评定方法[J].计量学报,2002,23(2):106-108.
[4] 刘元朋,刘晶,张力宁.复杂曲面测量数据最佳匹配问题研究[J].中国机械工程,2005,16(12):1080-1082.
[5] Kyusojin A, Akimoto Y. A new method of best fitting on curved surface[J].SPIE, 1993, 2101:54-61.
[6] 廖平.基于遗传算法和分割逼近法精确计算复杂曲面轮廓度误差[J].机械工程学报,2010,46(10):1-7.
[7] Liu Y J, Zhu X L. Research on curve surface fairing of complicated ship hull plate[J].Journal of Dalian University of Technology, 2005, 45(2):226-229.
[8] Hearn D,Baker M P.计算机图形学(第二版)[M].北京:电子工业出版社, 2002.
[9] Ames A L, Nadeau D R, Moreland J L. VRML资源手册[M].北京:电子工业出版社, 1998.
[10] 王汝传,姚旭敏,王海艳,等.基于Java和VRML虚拟场景通信方式的研究[J]. 系统仿真学报, 2003, 15(7): 986-990.
[11] 廖平.基于遗传算法的形状误差计算研究[D].湖南:中南大学, 2002.