2025年05月11日 星期日 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2023, Vol. 44 Issue (8): 1256-1263    DOI: 10.3969/j.issn.1000-1158.2023.08.16
  无线电、时间频率计量 本期目录 | 过刊浏览 | 高级检索 |
基于ECT与深度学习的高含水率违禁品快速筛查方法
何永勃,张书豪
中国民航大学 电子信息与自动化学院, 天津 300300
Rapid Screening Method of High Moisture Content Contraband Based on ECT and Deep Learning
HE Yong-bo,ZHANG Shu-hao
College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
全文: PDF (660 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 为了实现海关对高含水率违禁品的非侵入快速筛查,提出了一种电容层析成像(ECT)技术与深度学习相结合的检测方法,在仿真环境下进行了可行性研究。首先,设计了适合安装在传送装置上的ECT传感器,并构建了分别含有正常物体和高含水率违禁品的不同包裹模型;然后,利用电容传感器获得不同包裹模型的电容信号数据,并进行二维和三维图像重建;最后,为了弥补人工观察包裹重建图像误判率高的缺陷,构建了自适应提取电容信号特征的一维卷积神经网络(1D-CNN)模型对包裹模型进行预测分类。实验结果表明:该方法的检测准确率可达98%以上,单个模型检测时间仅为10-3s,能够实现高含水率违禁品的快速筛查。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
何永勃
张书豪
关键词 计量学含水率违禁品检测深度学习快速筛查ECT传感器    
Abstract:In order to realize the non-invasive and rapid screening of high moisture content contraband by the customs, a detection method combining electrical capacitance tomography (ECT) technology and deep learning is proposed, and the feasibility study is carried out in the simulation environment. Firstly, the ECT sensor suitable for installation on the conveyor is designed, and different package models containing normal objects and contraband with high moisture content are constructed; Then, the capacitance signal data of different package models are obtained by capacitance sensor, and the two-dimensional and three-dimensional image reconstruction are carried out; Finally, in order to make up for the high error rate of manually observed package reconstruction image, a one-dimensional convolutional neural network (1D-CNN) model for adaptive extraction of capacitance signal features is constructed to predict and classify the package model. The experimental results show that the detection accuracy of the proposed method can reach over 98%, and the detection time of a single model is only 10-3 seconds, which can achieve rapid screening of high moisture content prohibited substances.
Key wordsmetrology;moisture content    contraband detection;deep learning;rapid screening;ECT sensor
收稿日期: 2022-05-17      发布日期: 2023-08-22
PACS:  TP973  
基金资助:国家自然科学基金 (61871379);天津市教委科研计划 (2020KJ012)
作者简介: 何永勃(1971-),男,陕西蒲城人,中国民航大学副教授,主要从事航空检测技术及智能化仪表方面研究。Email:ybhe@cauc.edu.cn
引用本文:   
何永勃,张书豪. 基于ECT与深度学习的高含水率违禁品快速筛查方法[J]. 计量学报, 2023, 44(8): 1256-1263.
HE Yong-bo,ZHANG Shu-hao. Rapid Screening Method of High Moisture Content Contraband Based on ECT and Deep Learning. Acta Metrologica Sinica, 2023, 44(8): 1256-1263.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2023.08.16     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2023/V44/I8/1256
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn