2025年04月29日 星期二 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2023, Vol. 44 Issue (7): 1052-1058    DOI: 10.3969/j.issn.1000-1158.2023.07.07
  热学计量 本期目录 | 过刊浏览 | 高级检索 |
小型化硅基微腔光子测温系统
梅明城1,3,韩琪娜2,3,施杨3,周琨荔3,曾九孙1,王瑾3,张诚3,4,高建新3,5,瞿志二3,4,潘奕捷3,屈继峰3
1.中国计量大学计量测试工程学院,浙江 杭州 310018
2.哈尔滨工业大学仪器科学与工程学院,黑龙江 哈尔滨 150001
3.中国计量科学研究院前沿计量科学研究中心,北京 100029
4.北京理工大学光电学院,北京 100081
5.中国计量大学光学与电子科技学院,浙江 杭州 310018
A Miniaturized Silicon Microcavity Based Photonic Temperature Measurement System
MEI Ming-cheng1,3,HAN Qi-na2,3,SHI Yang3,ZHOU Kun-li3,ZENG Jiu-sun1,WANG Jin3,ZHANG Cheng3,4,GAO Jian-xin3,5,QU Zhi-er3,4,PAN Yi-jie3,QU Ji-feng3
1. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 30018, China
2. School of Instrument Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
3. Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
4. School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
5. College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
全文: PDF (65919 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 回音壁模式硅基微腔光子温度传感可应用于强电磁场、高辐照、强振动等极端环境下的温度测量。在前期设计、制备、验证具有毫开尔文(mK)量级分辨率的硅基微环光子温度传感器的基础上,研制了一套小型化微腔光子测温硬件系统,包括信号发生与高速数模转换、电压-电流转换、激光二极管温度控制和微弱信号采集与放大等模块,设计并实现了基于单片机的同步测量方案和光谱测温算法。在高稳定恒温浴槽内验证了系统性能,实际测温结果的扩展不确定度为115mK(k=2),测温范围30K。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
梅明城
韩琪娜
施杨
周琨荔
曾九孙
王瑾
张诚
高建新
瞿志二
潘奕捷
屈继峰
关键词 计量学;微腔光子测温温度传感;光子温度计;微环谐振腔;高分辨率;小型化    
Abstract:The photonic temperature sensing based on silicon microcavity with whispering gallery mode can be applied in extreme environments such as strong electromagnetic field, high irradiation and strong vibration. On the basis of silicon microcavity photonic temperature sensor with mK resolution which is pre-designed, fabricated and validated, a miniaturized microcavity photonic temperature measurement hardware system was developed, which includes modules of signal generation, high-speed digital-to-analog conversion, voltage-to-current conversion, laser diode temperature control, weak signal acquisition and amplification were designed and implemented, as well as the algorithm of synchronous measurement and spectral temperature measurement based on single chip microcomputer. The system performance was verified in a high stable constant temperature bath, the extended uncertainty of the actual temperature measurement results is 115mK (k=2), and the temperature range is 30K.
Key wordsmetrology    microcavity photonic thermometry    temperature sensing    photonic thermometer    micro-ring resonator    high resolution    miniaturization
收稿日期: 2022-10-20      发布日期: 2023-07-17
PACS:  TB942  
基金资助:国家重点研发计划目(2022YFF0608304);国家自然科学基金(62075206,62205324)
通讯作者: 潘奕捷(1980-),男,北京人,中国计量科学研究院副研究员,从事微腔光子测温与芯片级量子计量研究。Email: panyijie@nim.ac.cn     E-mail: panyijie@nim.ac.cn
作者简介: 梅明城(1997-),男,浙江温州人,中国计量大学硕士研究生,研究方向为小型化微腔光子测温与硬件设计。Email: 1227247545@qq.com
引用本文:   
梅明城,韩琪娜,施杨,周琨荔,曾九孙,王瑾,张诚,高建新,瞿志二,潘奕捷,屈继峰. 小型化硅基微腔光子测温系统[J]. 计量学报, 2023, 44(7): 1052-1058.
MEI Ming-cheng,HAN Qi-na,SHI Yang,ZHOU Kun-li,ZENG Jiu-sun,WANG Jin,ZHANG Cheng,GAO Jian-xin,QU Zhi-er,PAN Yi-jie,QU Ji-feng. A Miniaturized Silicon Microcavity Based Photonic Temperature Measurement System. Acta Metrologica Sinica, 2023, 44(7): 1052-1058.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2023.07.07     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2023/V44/I7/1052
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn