2025年06月04日 星期三 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2023, Vol. 44 Issue (4): 630-637    DOI: 10.3969/j.issn.1000-1158.2023.04.21
  电离辐射、标准物质与生物计量 本期目录 | 过刊浏览 | 高级检索 |
基于VMD-IASO-ELM的吸收塔出口SO2浓度组合预测模型
金秀章,李阳峰,姚宁
华北电力大学控制与计算机工程学院,河北 保定 071003
Combined Prediction Model of SO2 Concentration at Outlet of Absorber Based on VMD-IASO-ELM
JIN Xiu-zhang,LI Yang-feng,YAO Ning
School of Control and Computer Engineering, North China Electric Power University, Baoding, Hebei 071003, China
全文: PDF (60040 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 为提高火电厂SO2污染物排放控制水平,提出一种基于变分模态分解(VMD)改进原子搜索算法(IASO)极限学习机(ELM)的吸收塔出口SO2浓度组合预测模型。首先,利用机理和相关性分析确定吸收塔出口SO2浓度的初始相关变量,并采用VMD算法对其分解,保留分解结果与输出互信息中大的低频分量;然后,采用结构简单、学习速度快的ELM建立预测模型,并利用基于混合策略改进的IASO优化网络参数,提高预测精度;最后,利用模糊规则推理出误差修正项以校正ELM模型预测结果。应用历史数据仿真建模,结果表明该模型具有较高的预测精度和学习能力,能够准确跟踪吸收塔出口SO2浓度变化趋势。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
金秀章
李阳峰
姚宁
关键词 计量学SO2浓度预测变分模态分解原子搜索算法极限学习机模糊推理    
Abstract:In order to improve the emission control level of SO2 pollutants in thermal power plants, a combined prediction model of SO2 concentration at outlet of absorber was proposed based on VMD-IASO-ELM. Firstly, the mechanism and correlation analysis were used to determine the initial correlation variables of SO2 concentration at outlet of absorber, and variational mode decomposition (VMD) algorithm was used to decompose it. The low-frequency components with large mutual information between the decomposition results and the output were retained. Then, the simple structure was established based on fast-learning extreme learning machine (ELM), and the improved atomic search optimization (IASO) based on hybrid strategy was used to optimize network parameters and improve the prediction accuracy. Finally, the error correction term was deduced from fuzzy rules to correct the prediction results of ELM model. Using historical data for simulation modeling, the results show that the model has high prediction accuracy and learning ability and can accurately track the change trend of SO2 concentration at the outlet of absorber.
Key wordsmetrology    SO2 concentration prediction    VMD    ASO    ELM    fuzzy reasoning
收稿日期: 2021-11-19      发布日期: 2023-04-18
PACS:  TB99  
基金资助:国家重点研发计划(2016YFB0600701)
通讯作者: 李阳峰(1997-),男,青海乐都人,华北电力大学硕士研究生,研究方向为预测控制在火电厂脱硫脱硝中的应用、机器学习等。Email: 874068225@qq.com     E-mail: 874068225@qq.com
作者简介: 金秀章(1969-),男,河北衡水人,华北电力大学副教授,主要从事先进控制策略在大型火电机组中的应用、信息融合技术方面研究。Email: jinxzsys@163.com
引用本文:   
金秀章,李阳峰,姚宁. 基于VMD-IASO-ELM的吸收塔出口SO2浓度组合预测模型[J]. 计量学报, 2023, 44(4): 630-637.
JIN Xiu-zhang,LI Yang-feng,YAO Ning. Combined Prediction Model of SO2 Concentration at Outlet of Absorber Based on VMD-IASO-ELM. Acta Metrologica Sinica, 2023, 44(4): 630-637.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2023.04.21     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2023/V44/I4/630
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn