Abstract:In order to ensure food safety, microbiological inspection for food hygiene must be attached importance. As the most commonly used microbial detection target, nucleic acid molecules require reference materials to realize traceability and provide a measurement basis. Nucleic acid reference materials are the sample standard to ensure the accuracy and consistency of nucleic acid test results. Here, the development of nucleic acid reference materials of several common foodborne pathogenic microorganisms were reviewed, in order to promote their application in food safety testing, and provide reference for improving the quality control level of microbial test results, ensuring the accuracy and impartiality of test results, and promoting the development of nucleic acid reference materials.
Wu Q P, Li Y D, Zhang J M. Advances in metabolomics of common food-borne pathogen[J]. Microbiology China, 2016, 43(3): 609-618.
[4]
Trapmann S, Catalani P, Hoorfar J, et al. Development of a novel approach for the production of dried genomic DNA for use as standards for qualitative PCR testing of food-borne pathogens[J]. Accreditation and Quality assurance, 2004, 9(11): 695-699.
Zitz U, Zunabovic M, Domig K J, et al. Reduced detectability of Listeria monocytogenes in the presence of Listeria innocua[J]. Journal of Food Protection, 2011, 74(8): 1282-1287.
Tian J, Liu X M. Risk Assessment of Listeria monocytogenes in Foods[J]. Chinese Journl of Food Hygiene, 2009, 21(5): 468-472.
[20]
Goode B, OReilly C, Dunn J, et al. Outbreak of Escherichia coli O157: H7 Infections After Petting Zoo Visits, North Carolina State Fair, October-November 2004[J]. Archives of Pediatrics and Adolescent Medicine, 2009, 163(1): 42-48.
[22]
Verweyen H M, Karch H, Brandis M, et al. Enterohemorrhagic Escherichia coli infections: following transmission routes[J]. Pediatric Nephrology, 2000, 14(1): 73-83.
[24]
Iwaarden P V, Philipp W, Catalani P, et al. Certification of a Reference Material of Purified Genomic DNA from Escherichia Coli O157 (EDL 933) Certified Reference Material IRMM-449[R]. IRMM EU, EUR Report 22110, 2006.
[26]
Liang W, Xu L, Sui Z, et al. Quantification of plasmid DNA reference materials for Shiga toxin-producing Escherichia coli based on UV, HR-ICP-MS and digital PCR[J]. Chemistry Central Journal, 2016, 10(1): 1-10.
[30]
Guibourdenche M, Roggentin P, Mikoleit M, et al. Supplement 2003—2007 (No.47) to the White-Kauffmann-Le minor scheme [J]. Res Microbiol, 2010, 161(1): 26-29.
[32]
Mezal E, Sabol A, Khan M, et al. Isolation and molecular characterization of Salmonella enterica serovar enteritidis from poultry house and clinical samples during 2010 [J]. Food Microbiol, 2014, 38: 67-74.
[34]
Vallejo C V, Tere C P, Calderon M N, et al. Development of a genomic DNA reference material for Salmonella enteritidis detection using polymerase chain reaction[J]. Molecular and Cellular Probes, 2021, 55: 101690.
Nusereti A, Yuan M Y, Lin X F, et al. Preparation of plasmid DNA reference material for Salmonella typhi[J]. Journal of Molecular Diagnostics and Therapy, 2020, 12(12): 1740-1744.
[1]
赵军.我国食品安全现状及检测新技术的应用[J].中国食品,2019(Z1):244-245.
[5]
Rijpens N P, Herman L M F. Molecular methods for identification and detection of bacterial food pathogens[J]. Journal of AOAC International, 2002, 85(4): 984-995.
[6]
Mackay I M, Arden K E, Andreas N. Real-time PCR in virology[J]. Nucleic Acids Reseah, 2002,6:1292-305.
Li D, Wang J, Yang Z, et al. Experimental design analysis of developing quantitative nucleic acid reference materials[J]. Acta Metrologica Sinica, 2020,41(11):1436-1442.
Niu C Y, Zhang Y X, Yang J Y, et al. Research on the collaborative value assignment of plasmid nucleic acid refernce materials based on digital PCR[J]. Acta Metrologica Sinica, 2021, 42(11): 1522-1527.
Mohawk K L, OBrien A D. Mouse models of Escherichia coli O157: H7 infection and shiga toxin injection[J]. Journal of Biomedicine and Biotechnology, 2011(5):258185.
Kubista M, Andrade J M, Bengtsson M, et al. The real-time polymerase chain reaction[J]. Molecular aspects of medicine, 2006, 27(2-3): 95-125.
Luo C, Li Y, Zhao k k, et al. Freeze-drying and preservation method studies on Standard Reference Materials of Listeria monocytogenes[J]. Shanghai Metrology and Testing, 2019, 46(4): 6-10.
Pu Z N, Lin X F, Yuan M Y, et al. Preparation of plasmid DNA reference material for Listeria monocytogenes[J]. Chinese Journal of Food Hygiene, 2021, 33(3): 279-284.
[19]
Nguyen Y, Sperandio V. Enterohemorrhagic E. coli (EHEC) pathogenesis[J]. Frontiers in Cellular and Infection Microbiology, 2012, 2: 90.
[27]
World Health Organization. WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007-2015[M]. Geneva: WHO Press, 2015.
[28]
Xiong D, Song L, Pan Z M, et al. Identification and Discrimination of Salmonella enterica serovar gallinarum biovars pullorum and gallinarum based on a one-step multiplex PCR[J]. Frontiers in Microbiology, 2018, 9: 1718.
[29]
Yang Q, Wang F, Jones K L, et al. Evaluation of loop-mediated isothermal amplification for the rapid, reliable, and robust detection of Salmonella in produce[J]. Food Microbiology, 2015, 46: 485-493.
[31]
Wang Y, Yang B, Wu Y, et al. Molecular characterization of Salmonella enterica serovar enteritidis on retail raw poultry in six provinces and two national cities in China [J]. Food Microbiol, 2015, 46: 74-80.
Yuan M Y, Xu L Y, Ke B X, et al. Species differentiation and identification in Salmonella isolates by real-time PCR[J]. Chinese Journal of Health Laboratory Technology, 2017, 27(16): 2291-2294.
[37]
Chiefari A K, Perry M J, Kelly-Cirino C, et al. Detection of Staphylococcus aureus enterotoxin production genes from patient samples using an automated extraction platform and multiplex real-time PCR[J]. Molecular and cellular probes, 2015, 29(6): 461-467.
Xu Z B, Liu X C, Li L, et al. Development of Staphylococcus aureus enterotoxin in food-borne bacteria[J]. Modern Food Science and Technology, 2013, 29(9): 2317-2324.
Chen C, Liang L, Wang C E, et al. Development of national reference for Staphylococcus aureus nucleic acid detection kit[J]. Journal of Food Safety and Quality, 2021, 12(20): 8251-8257.
Zhao Y J, Liao T Y, Fan P L, et al. A oerspective on nucleic acid reference materials[J]. Metrology Science and Technology, 2022, 66(2): 15-20.
Lin Y, Yang W L, Zhou L Y, et al. Research Progress in Agricultural Genetically Modified Nucleic Acid Reference Materials[J]. Biotechnology Bulletin, 2022, 38(8): 52-59.
[15]
de Noordhout C M, Devleesschauwer B, Angulo F J, et al. The global burden of listeriosis: a systematic review and meta-analysis[J]. The Lancet Infectious Diseases, 2014, 14(11): 1073-1082.
Liu G, Li Y, Xu L. Plasmid DNA Standard Reference Material for the Specific Detection of Listeria Monocytogenes[J]. Chemical Reagents, 2016, 38(7): 664-668.
[23]
Phillips M M, Seal T M L, Ness J M, et al. Development and characterization of a Multimycotoxin reference material[J]. Journal of AOAC International, 2019, 102(6): 1642-1650.
[25]
Philipp W J, van Iwaarden P, Schimmel H, et al. Development of reference materials for microbiological analysis[J]. Accreditation and Quality Assurance, 2007, 12(3): 134-138.
[33]
Authority E F S, Prevention E C F D. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2011[J]. EFSA Journal, 2013, 11(4): 3129.
Farahmand M, Moghoofei M, Dorost A, et al. Global prevalence and genotype distribution of norovirus infection in children with gastroenteritis: A meta-analysis on 6 years of research from 2015 to 2020[J]. Reviews in Medical Virology, 2022, 32(1): e2237.
[43]
Sadiq A, Bostan N, Yinda K C, et al. Rotavirus: Genetics, pathogenesis and vaccine advances[J]. Reviews in Medical Virology, 2018, 28(6): e2003.
[44]
Vinjé J, Green J, Lewis D C, et al. Genetic polymorphism across regions of the three open reading frames of “Norwalk-like viruses” [J]. Archives of Virology, 2000, 145(2): 223-241.
Zeinhom M M A, Abdel-Latef G K, Jordan K. The use of multiplex PCR to determine the prevalence of enterotoxigenic Staphylococcus aureus isolated from raw milk, feta cheese, and hand swabs[J]. Journal of Food Science, 2015, 80(12): M2932-M2936.
[45]
Atmar R L, Opekun A R, Gilger M A, et al. Norwalk virus shedding after experimental human infection.[J]. Emerging Infectious Diseases, 2008, 14(10): 1553-1557.
Pasloske B L, Walkerpeach C R, Obermoeller R D, et al. Armored RNA technology for production of ribonuclease-resistant viral RNA controls and standards[J]. Journal of Clinical Microbiology, 1998, 36(12): 3590-3594.
[47]
Song L, Sun S, Li B, et al. External Quality Assessment for Enterovirus 71 and Coxsackievirus A16 Detection by Reverse Transcription-PCR Using Armored RNA as a Virus Surrogate[J]. Journal of Clinical Microbiology, 2011, 49(10):3591-3595.
Zhang Q, Yao L, Jiang Y H, et al. Development of armored RNA reference material of Norovirus based on Qbeta bacteriophage[J]. China Biotechnology, 2018, 38(1): 42-50.
Wang M Q, Yang J, Chang Y T, et al. Preparation of coupled armored RNA reference material for Norovirus GI/GII[J]. Modern Food Science and Technology, 2021, 37(3): 286-293,131.
[51]
Tate J E, Burton A H, Boschi-Pinto C, et al. Global, regional, and national estimates of rotavirus mortality in children <5 years of age, 2000—2013[J]. Clinical Infectious Diseases, 2016, 62(suppl_2): S96-S105.
Xu L R, Wei H Y, Ma D, et al. Establishment of a Nucleic Reference Material for Rotavirus Detection[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(7): 201-209.
[50]
Roczo-Farkas S, Kirkwood C D, Bines J E. Australian rotavirus surveillance program: annual report, 2016[J]. Communicable Diseases Intelligence, 2017, 41(4): E455-E471.