Abstract:The relative temperature measurement of thermal imager is widely used in the test field. Its time-varying characteristics, nonlinearity and radiation source size effect lead to the error of relative temperature measurement, which brings inconvenience to the uncertainty analysis of test results. Therefore, a performance evaluation method of relative temperature measurement of thermal imager is proposed. The thermal node of the sheet thermocouple is fixed on the surface of the heating unit with uniform temperature field as the standard radiation temperature generating unit. The thermal imager to be evaluated is observed and measured. The relative temperature measurement performance of the thermal imager is evaluated by comparing the similarity between the surface temperature field data of the thermocouple thermal node observed by the thermal imager and the temperature data measured by the thermocouple itself. Based on 7 thermal imagers with different specifications of 4 brands at home and abroad, the results show that the relative temperature measurement error and absolute temperature measurement error of the thermal imager are quite different, and the relative temperature measurement error is usually between the noise equivalent temperature difference and absolute temperature measurement error. At the same time, it is found that the performance of No.6 thermal imager is poor and the temperature drift is serious. The performance of the thermal imager is tested at the same time through the targets A and B in the device. The standard deviation of the evaluation results is less than 8%, which shows that the method has high reliability and has a certain reference significance for the evaluation of the relative temperature measurement performance of the thermal imager.
[1]程蕾. 被测目标热参数反演算法研究[D]. 哈尔滨:哈尔滨工业大学, 2015.
[2]郭伟, 董丽虹, 徐滨士, 等. 主动红外热像无损检测技术的研究现状与进展[J]. 无损检测, 2016, 38(4): 58-66.
Guo W, Dong L H, Xu B S, et al. Research status and progress of active infrared thermal image nondestructive testing technology[J]. Nondestructive testing, 2016, 38(4): 58-66.
[3]董泽文,侯德鑫,叶树亮. 基于热成像的软包锂电池导热系数测试方法[J]. 计量学报, 2021, 42(12): 1596-1602.
Dong Z W,Hou D X,Ye S L. Test Method of Thermal Conductivity of Pouch Lithium-ion Cell Based on Thermography[J]. Acta Metrologica Sinica, 2021, 42(12): 1596-1602.
[3]黄军, 黄彦平, 马建, 等. 红外热像仪在纵向涡强化传热研究中的应用[J]. 工程热物理学报, 2009, 30(4): 665-667.
Huang J, Huang Y P, Ma J, et al. Application of infrared thermal imager in the study of longitudinal vortex enhanced heat transfer[J]. Journal of Engineering Thermophysics, 2009, 30(4): 665-667.
[4]蔡李靖, 周凯来, 沈桂竹, 等. 红外热像仪高精度测温标定技术[J]. 红外与激光工程, 2021, 50(10): 202-209.
Cai L J, Zhou K L, Sheng G Z, et al. High precision temperature measurement calibration technology of infrared thermal imager [J]. Infrared and laser engineering, 2021, 50(10): 202-209.
[5]张志强, 王萍, 于旭东, 等. 高精度红外热成像测温技术研究[J]. 仪器仪表学报, 2020, 41(5): 10-18.
Zhang Z Q, Wang P, Yu X D, et al. Research on high precision infrared thermal imaging temperature measurement technology[J]. Journal of instumentation, 2020, 41(5): 10-18.
[6]Kelly J, Kljun N, Olsson P O, et al. Challenges and Best Practices for Deriving Temperature Data from an Uncalibrated UAV Thermal Infrared Camera[J].Remote Sens, 2019, 11(5): 567.
[7]段宇宁, Bloem P. 辐射源尺寸效应研究[J]. 计量学报, 1996, 17(3): 161-166.
Duan Y N, Bloem P. Study on size effect of radiation source[J]. Acta Metrologica Sinica, 1996, 17(3): 161-166.
[8]余开科, 田裕鹏, 王平, 等. 基于脉冲涡流热成像的面内方向性热扩散率测量[J]. 计量学报, 2019, 40(6): 1030-1036.
Yu K K, Tian Y P, Wang P, et al. Measurement of inplane directional thermal diffusivity using pulsed eddy current thermography[J]. Acta Metrologica Sinica, 2019, 40(6): 1030-1036.
[9]侯德鑫, 陈玥, 叶树亮. 基于热成像的背胶石墨膜面向热导率测试方法[J]. 化工学报, 2019, 70(S2): 76-84.
Hou D X, Chen Y, Ye S L. Thermal conductivity measurement method of adhesive graphite film based on thermal imaging[J]. Journal of Chemical Engineering, 2019, 70(S2): 76-84.
[10]张绩松, 王晓娜, 侯德鑫, 等. 基于激光热成像的局部导热系数测试[J]. 激光与红外, 2020, 50(12): 1426-1432.
Zhang J S, Wang X N, Hou D X, et al. The measurement of local thermal conductivity of Journal of chemical engineering based on laser thermal imaging[J]. Laser and infrared, 2020, 50(12): 1426-1432.
[11]王晓娜, 厉阳, 侯德鑫, 等. 基于热成像的薄片材料热扩散率快速无损检测[J]. 计量学报, 2016, 37(3): 260-264.
Wang X N, Li Y, Hou D X, et al. A rapid and nondestructive detection on the thermal diffusivity of thin materials based on thermography[J]. Acta Metrologica Sinica, 2016, 37(3): 260-264.
[12]Chrzanowski K. Evaluation of commercial thermal cameras in quality systems[J]. Optical Engineering, 2002, 41(10): 2556-2567.
[13]Fischer J. Testing and evaluation of thermal cameras for absolute temperature measurement[J]. Optical Engineering, 2000, 39(9): 2535-2544.
[14]胡铁力, 冯卓祥, 李旭东, 等. 红外热像仪时间噪声测量技术研究[J]. 红外与激光工程, 2008, 37(S2): 519-522.
Hu T L, Feng Z X, Li X D, et al. Research on time noise measurement technology of infrared thermal imager. [J]. Infrared and laser engineering, 2008, 37(S2): 519-522.
[15]马宁, 刘莎, 李江勇. 红外热像仪的空间噪声和时间噪声分析[J]. 激光与红外, 2017, 47(6): 717-721.
Ma N, Liu S, Li J Y. Analysis of space noise and time noise of infrared thermal imager[J]. Laser and infrared, 2017, 47(6): 717-721.
[16]初华, 万强, 黎伟, 等. 红外热像仪噪声等效温差工程化测试方法[J]. 激光与红外, 2016, 46(12): 1496-1500.
Chu H, Wan Q, Li W, et al. Engineering test method for noise equivalent temperature difference of infrared thermal imager[J]. Laser and infrared, 2016, 46(12): 1496-1500.
[17]Berni J A J, Zarco-Tejada P J, Suarez L, et al. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle[J]. IEEE Trans Geosci Remote Sens, 2009, 47:722-738.