2025年04月29日 星期二 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2022, Vol. 43 Issue (11): 1412-1417    DOI: 10.3969/j.issn.1000-1158.2022.11.04
  光学计量 本期目录 | 过刊浏览 | 高级检索 |
基于ResNet50与迁移学习的轮毂识别
张典范1,杨镇豪2,程淑红2
1. 燕山大学河北省特种运载装备重点实验室, 河北 秦皇岛066004
2. 燕山大学 电气工程学院, 河北 秦皇岛066004
Wheel Hub Recognition Based on ResNet50 and Transfer Learning
ZHANG Dian-fan1,YANG Zhen-hao2,CHENG Shu-hong2
1. Hebei Key Laboratory of Special Delivery Equipment, Yanshan University,Qinhuangdao, Hebei 066004,China
2. Institute of Electrical Engineering,Yanshan University,Qinhuangdao, Hebei 066004,China
全文: PDF (3043 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对人工进行轮毂分拣存在的误识别问题,采用一种基于ResNet50与迁移学习的神经网络模型来识别汽车轮毂。把预训练模型参数迁移到ResNet50卷积神经网络中,修改原网络的输出层,构建基于ResNet50的迁移学习模型,通过进一步训练轮毂数据集来微调模型参数,提取轮毂的细粒度特征。通过对比AlexNet、VGG11、VGG16与ResNet50模型在未使用微调、使用微调和冻结不同数量卷积层参数时的训练效率、准确率,证明ResNet50迁移学模型在冻结前7个Bottleneck残差块参数时不仅能缩短训练时间,并能在相同迭代周期下取得更高的准确率。在该冻结策略下训练生成TL-ResNet50迁移学习模型,分别对8种轮毂进行预测,得出每种轮毂的平均准确率达到99%以上。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
张典范
杨镇豪
程淑红
关键词 计量学轮毂识别;残差网络迁移学习细粒度图像分类    
Abstract:Aiming at the problem of false identification in manual wheel hub sorting, a neural network model based on ResNet50 and transfer learning is adopted to identify the model of automobile wheel hub.The parameters of the pretraining model are migrated to the ResNet50 convolution neural network, the output layer of original network is modified, and the transfer learning model based on ResNet50 is constructed.By comparing the training efficiency and accuracy of AlexNet, VGG11, VGG16 and ResNet50 when different volume convolution layer parameters are not fine-tuned, used fine-tuning and frozen, it is proved that the ResNet50 transfer model can not only shorten training time when the parameters of the seven bottleneck fragments are frozen but also achieve higher accuracy under the same iteration cycle.Under the freezing strategy, the TL-ResNet50 transfer learning model is trained to predict each of the eight hubs, and the average accuracy of each hub is over 99%.
Key wordsmetrology    wheel hub model recognition    residual net    transfer learning    fine-grained image classification
收稿日期: 2021-05-31      发布日期: 2022-11-14
PACS:  TP96  
  TB973  
基金资助:国家重点研发计划(2021YFB3202303)、河北省重点研发计划(20371801D)
作者简介: 张典范(1978-),吉林人,燕山大学研究员,博士,研究方向为并联机器人、智能控制、视觉检测等。Email:zdf@ysu.edu.cn
引用本文:   
张典范,杨镇豪,程淑红. 基于ResNet50与迁移学习的轮毂识别[J]. 计量学报, 2022, 43(11): 1412-1417.
ZHANG Dian-fan,YANG Zhen-hao,CHENG Shu-hong. Wheel Hub Recognition Based on ResNet50 and Transfer Learning. Acta Metrologica Sinica, 2022, 43(11): 1412-1417.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2022.11.04     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2022/V43/I11/1412
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn