Abstract:The low level of temperature measurement and control of guarded-hot plate devices is an important reason for the deviation of measurement results. Guarded-hot plate devices inherits intrinsic thermal inertia, and multiple units being mandatory temperature controlling. Those units thermally interact via heat conduction and transfer appearing in non-linear interaction, thus, proper setting of controller parameters is critical for suppressing temperature fluctuations. On the temperature control system composed of domestic precision industrial thermometer, thermometer, DC power supply and LabVIEW virtual PID controller, the temperature control parameters of guarded-hot plate devices are studied.The PID control parameters of the system are optimized in segments, and the influence of the temperature control sequence of each component of the guarded-hot plate devices on the overall temperature control effect is studied. According to the setting parameters, in the range from room temperature to 400℃, each unit of the guarded-hot plate device can be controlled within ±0.01℃ in long times. The experimental results show that the parameter setting method can meet the technical requirements of high precision guarded-hot plate devices.
[1]Dickinson H C, Van Dusen M S. The testing of thermal insulators [EB/OL]. https://permanent.access.gpo.gov/lps1514/nvl.nist.gov/pub/nistpubs/sp958-lide/010-013.pdf,2021-02-20.
[2]Van Dusen M S. The thermal conductivity of heat insulators [J]. The American Society of Heating and Ventilating Engineering,1920, 26:385-414
[3]ISO 8302:1991Thermal Insulation—Determination of Steady-State Thermal Resistance and Related Properties—Guarded Hot Plate Apparatus [S].
[4]ASTM C177Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus [S]. 2004.
[5]GB/T 10294绝热材料稳态热阻及有关特性的测定防护热板法[S].
[6]Zarr R R, Hahn M H. Line-Heat-Source Guarded-Hot-Plate Apparatus [R].Adjunct to ASTM C 1043-97, 1995.
[7]Zarr R R. Standard Reference Materials:Glass Fiberboard, SRM 1450c, for thermal resistance from 280K to 340K [R]. NIST Special Publication,1997.
[8]Zarr R R. A history of testing heat insulators at the National Institute of Standards and Technology [J]. ASHRAE Transactions, 2001, 107(2):661-671.
[9]Zarr R R, Flynn D R, Hettenhouser J W, et al. Fabrication of a Guarded-Hot-Plate Apparatus for Use Over an Extended Temperature Range and in a Controlled Gas Atmosphere [J].Thermal conductivity, 2006, 28:235
[10]Flynn D R, Healy W M, Zarr R R. High-Temperature Guarded Hot Plate Apparatus-Control of Edge Heat Loss[J].Thermal Conductivity, 2006, 28:208.
[11]Zarr R R, Wu J, Liu H K. NIST-NPL Bilaeral Comparison of Guarded-Hot-Plate Laboratories from 20℃ to 160℃ [R]. NIST Techonical Note 2059, 2020.
[12]William C. Simulation of PID Control for Guarded-Hot-Plate Apparatus [R]. NIST Technical Note 1764, 2012.
[13]胡迪锋, 周向阳. 一种面向无模型系统的PID参数整定法 [J]. 控制工程, 2020, 27 (11):1962-1969.
Hu D F, Zhou X Y. A PID Parameters Tuning Method for Model-free Systems [J]. Control Engineering of China, 2020, 27(11):1962-1969.
[14]张宝峰, 张燿, 朱均超. 基于模糊PID的高精度温度控制系统 [J]. 传感技术学报, 2019, 32 (9):1425-1429.
Zhang B F, Zhang Y, Zhu J C. High precision temperature control system based on fuzzy PID [J]. Chinese Journal of Sensors and Actuators, 2019, 32(9):1425-1429.
[15]林巍, 王亚刚. 串级控制系统闭环辨识及PID参数整定 [J]. 控制工程, 2018, 25(1):11-18.
Lin W, Wang Y G. Modeling for Cascade Control Systems Based on Frequency Domain and PID arameter Tuning [J]. Control Engineering of China, 2018, 25(1):11-18.
[16]刘小蒙, 陈天明, 梁逸敏. 基于改进性能指标的智能PID参数整定算法[J]. 工业控制计算机, 2017, 30(10):32-34.
Liu X M, Chen T M, Liang Y M. An intelligent PID tuning algorithm for first order lag system based on improved performance index [J]. Industrial Control Computer, 2017, 30(10):32-34.
[17]李林海, 杨立荣, 何金立. PID参数整定仿真 [J].自动化与仪器仪表, 2017, (S1):11-15.
Li L H, Yang L R, He J L. PID parameter tuning simulation [J]. Automation and Instrumentation, 2017, (S1):11-15.
[18]曹珂,梁超群,郭瑞民,等. 衰荡光腔温度控制研究[J]. 计量学报, 2018, 39(3):431-435.
Cao K,Liang C Q,Guo R M,et al. Study on Temperature Control for Ring-Down Cavity[J]. Acta Metrologica Sinica, 2018, 39(3):431-435.