Abstract:DNA methylation is the most important epigenetic mechanism that has been deeply studied. DNA methylation analysis based on sequencing has laid the foundation for describing a relatively complete DNA CpG map. In the past few decades, the emergence of a large number of DNA methylation measurement technologies has greatly improved the research of genome methylation analysis. However, due to the great differences in equipment and personnel operations of different laboratories, it is difficult to compare the measurement results between laboratories. At the same time, due to the lack of standard analysis procedures and reference materials for evaluating genome methylation, it is not clear whether the current methylation specificity is as accurate as the usual recognition sequence implies. Therefore, the development and problems of DNA methylation measurement technology are discussed, and the importance of DNA methylation measurement accuracy evaluation and reference materials is proposed.
[1]Li Y Y. Modern Epigenetics Methods in Biological Research[J]. Methods, 2021, 187:104-113.
[2]Schübeler D. Function and information content of DNA methylation[J]. Nature, 2015, 517(7534):321-326.
[3]Bergman Y, Cedar H. DNA methylation dynamics in health and disease[J]. Nature Structural & Molecular Biology, 2013, 20(10):274-281.
[4]Jung S E, Shin K J, Lee H Y. DNA methylation-based age prediction from various tissues and body fluids[J]. BMB reports, 2017, 50(11):546-553.
[5]Kader F, Ghai M, Olaniran A O. Characterization of DNA methylation-based markers for human body fluid identification in forensics:a critical review[J]. Int J Legal Med, 2020, 134(1):1-20.
[6]Stelzer Y, Wu H, Song Y, et al. Parent-of-Origin DNA Methylation Dynamics during Mouse Development[J]. Cell Reports, 2016, 16(12):3167-3180.
[7]Bird A P. CpG-rich islands and the function of DNA methylation[J]. Nature, 1986, 21(6067):209-13.
[8]Chen K, Zhao B, He C. Nucleic Acid Modifications in Regulation of Gene Expression[J]. Cell Chemical Biology, 2016, 23(1):74-85.
[9]Zhang W, Yin R, Zhang D, et al. N6-methyladenine DNA modification in Drosophila[J]. Cell, 2015, 161(4):893-906.
[10]Skvortsova K, Stirzaker C, Taberlay P. The DNA methylation landscape in cancer[J]. Essays Biochem, 2019, 63(6):797-811.
[11]Bird A. DNA methylation patterns and epigenetic memory[J]. Genes Dev, 2002, 16(1):6-21.
[12]Feng L F, Lou J L. DNA Methylation Analysis[J]. Methods Mol Biol, 2019, 1894:181-227.
[13]聂燕钗, 俞丽娟, 管桦, 等. DNA甲基化检测方法及其法医学应用研究进展[J]. 法医学杂志, 2017, 33(3):293-300.
Nie Y C, Yu L J, Guan H, et al. Research progress of DNA methylation detection methods and its forensic application[J]. Journal of Forensic Medicine, 2017, 33(3):293-300.
[14]Sun Y Y, Tian W M. A novel restriction endonuclease GlaI for rapid and highly sensitive detection of DNA methylation coupled with isothermal exponential amplification reaction[J]. Chemical science, 2018, 9(5):1344-1351.
[15]Ruike Y, Imanaka Y, Sato F, et al. Genome-wide analysis of aberrant methylation in human breast cancer cells using methyl-DNA immunoprecipitation combined with high-throughput sequencing[J]. BMC Genomics, 2010, 11:137.
[16]杨林林, 蒋涛,隋亚鑫,等.DNA甲基化检测技术[J].标记免疫分析与临床,2020,163(5):183-189.
Yang L L, Jiang T, Sui Y X, et al. DNA methylation detection technology[J]. labeled immunoassays and clinical medicine, 2020, 163(5):183-189
[17]Lea A J, Vilgalys T P, Durst P A P, et al. Maximizing ecological and evolutionary insight in bisulfite sequencing data sets[J]. Nat Ecol Evol, 2017, 1(8):1074-1083.
[18]Bonora G, Rubbi L, Morselli M, et al. DNA methylation estimation using methylation-sensitive restriction enzyme bisulfite sequencing (MREBS)[J]. PLOS ONE, 2019, 14(4):0214368.
[19]Herman J G, Graff J R, Myhnen S, et al. Methylation-specific PCR:a novel PCR assay for methylation status of CpG islands[J]. Proc Natl Acad Sci U S A, 1996, 93(18):9821-6.
[20]Kurdyukov S, Bullock M. DNA Methylation Analysis:Choosing the Right Method[J]. Biology (Basel). 2016, 5(1):3.
[21]Fackler M J, Sukumar S. Quantitation of DNA Methylation by Quantitative Multiplex Methylation-Specific PCR (QM-MSP) Assay[J]. Methods Mol Biol, 2018, 1708:473-496.
[22]Cui X, Cao L, Huang Y, et al. In vitro diagnosis of DNA methylation biomarkers with digital PCR in breast tumors[J]. Analyst, 2018, 143(13):3011-3020.
[23]Deng D, Deng G, Smith M F, et al. Simultaneous detection of CpG methylation and single nucleotide polymorphism by denaturing high performance liquid chromatography[J]. Nucleic Acids Res, 2002, 30(3):E13.
[24]Omaruddin R A, Chaudhry M A. Detection of genomic DNA methylation with denaturing high performance liquid chromatography[J]. Hum Cell, 2010, 23(2):41-49.
[25]赖伊杰, 康亚妮. 肿瘤细胞DNA甲基化检测技术与研究方法新进展[J]. 生命科学, 2016, 28(4):513-520.
Lai Y J, Kang Y N. New progress in DNA methylation detection technology and research methods of tumor cells[J]. Life Sciences, 2016, 28(4):513-520.
[26]Ehrich M, Nelson M R, Stanssens P, et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry[J]. Proc Natl Acad Sci USA, 2005, 102(44):15785-90.
[27]Suchiman H E, Slieker R C, Kremer D, et al. Design, measurement and processing of region-specific DNA methylation assays:the mass spectrometry-based method EpiTYPER[J]. Front Genet, 2015, 6:287.
[28]Wojdacz T K. Methylation-sensitive high-resolution melting in the context of legislative requirements for validation of analytical procedures for diagnostic applications[J]. Expert Rev Mol Diagn, 2012, 12(1):39-47.
[29]Liu F, Zhang H, Lu S, et al. Quantitative assessment of gene promoter methylation in non-small cell lung cancer using methylation-sensitive high-resolution melting[J]. Oncol Lett, 2018, 15(5):7639-7648.
[30]Hussmann D, Hansen L L. Methylation-Sensitive High Resolution Melting (MS-HRM)[J]. Methods Mol Biol, 2018, 1708:551-571.
[31]Yamamura K, Kosumi K, Baba Y, et al. LINE-1 methylation level and prognosis in pancreas cancer:pyrosequencing technology and literature review[J]. Surg Today, 2017, 47(12):1450-1459.
[32]莫之婧, 郑顺心, 周素芳. CpG位点选择对焦磷酸测序法检测肝癌SMP30启动子甲基化的影响[J]. 山东医药, 2017, 57(9):1-4.
Mo Z J, Zheng S X, Zhou S F. Effect of CpG site selection on detection of SMP30 promoter methylation in liver cancer by pyrosequencing[J]. Shandong Medicine, 2017, 57(9):1-4.
[33]Reed K, Poulin M L, Yan L, et al. Comparison of bisulfite sequencing PCR with pyrosequencing for measuring differences in DNA methylation[J]. Anal Biochem, 2010, 397(1):96-106
[34]Wu Z, Bai Y, Cheng Z, et al. Absolute quantification of DNA methylation using microfluidic chip-based digital PCR[J]. Biosens Bioelectron, 2017, 96:339-344.
[35]Cheung H H, Lee T L, Rennert O M, et al. Methylation profiling using methylated DNA immunoprecipitation and tiling array hybridization[J]. Methods Mol Biol, 2012, 825:115-26.
[36]Weber M, Davies J J, Wittig D, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells[J]. Nat Genet, 2005, 37(8):853-62.
[37]Taiwo O, Wilson G A, Morris T, et al. Methylome analysis using MeDIP-seq with low DNA concentrations[J]. Nat Protoc, 2012, 7(4):617-36.
[38]Xing X, Zhang B, Li D, et al. Comprehensive Whole DNA Methylome Analysis by Integrating MeDIP-seq and MRE-seq[J]. Methods Mol Biol, 2018, 1708:209-246.
[39]代微, 刘继强. DNA甲基化检测技术研究进展[J]. 生物化工, 2018(2):126-128.
[40]Jia Z, Shi Y, Zhang L, et al. DNA methylome profiling at single-base resolution through bisulfite sequencing of 5mC-immunoprecipitated DNA[J]. BMC Biotechnol, 2018, 18(1):409-7.
[41]Serre D, Lee B H, Ting A H. MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome[J]. Nucleic Acids Res, 2010, 38(2):391-9.
[42]马浪浪, 梁振娟, 先新, 等. 基于高通量测序技术检测全基因组DNA甲基化水平的方法[J]. 生物技术通报, 2015, 31(7):45-50.
Ma L L, Liang Z J, Xian X, et al. A method for detecting genomic DNA methylation level based on high-throughput sequencing[J]. Bulletin of biotechnology, 2015, 31(7):45-50.
[43]Heimer B W, Tam B E, Sikes H D. Characterization and directed evolution of a methyl-binding domain protein for high-sensitivity DNA methylation analysis[J]. Protein Eng Des Sel, 2015, 28(12):543-51.
[44]Ni P, Huang N, Zhang Z, et al. DeepSignal:detecting DNA methylation state from Nanopore sequencing reads using deep-learning[J]. Bioinformatics, 2019(22):4586-4595.
[45]Simpson J T, Workman R E, Zuzarte P C, et al. Detecting DNA cytosine methylation using nanopore sequencing[J]. Nat Methods, 2017, 14(4):407-410.
[46]Rand A C, Jain M, Eizenga J M, et al. Mapping DNA methylation with high-throughput nanopore sequencing[J]. Nat Methods, 2017, 14(4):411-413.
[47]Flusberg B A, Webster D R, Lee J H, et al. Direct detection of DNA methylation during single-molecule, real-time sequencing[J]. Nat Methods, 2010, 7(6):461-5.
[48]马丽娜, 杨进波, 丁逸菲, 等. 三代测序技术及其应用研究进展[J]. 中国畜牧兽医, 2019, 46(8):2246-2256.
Ma L N, Yang J B, Ding Y F, et al. Research progress of third generation sequencing technology and its application [J]. Chinese Journal of Animal Husbandry and Veterinary Medicine, 2019, 46(8):2246-2256.
[49]王霞,欧阳艳艳,王晶,等. 高通量测序DNA文库定量质控技术研究[J]. 计量学报, 2020, 41(10):1308-1312.
Wang X,Ouyang Y Y,Wang J,et al. Research on Characterization Method for Library DNA Reference Material for Next Generation Sequencing[J]. Acta Metrologica Sinica, 2020, 41(10):1308-1312.
[50]Rhoads A, Au K F. PacBio Sequencing and Its Applications[J]. Genomics Proteomics Bioinformatic, 2015, 13(5):278-89.
[51]Li J, Zhou C, Zhou H, et al. The association between methylated CDKN2A and cervical carcinogenesis, and its diagnostic value in cervical cancer:a meta-analysis[J]. Ther Clin Risk Manag, 2016, 12:1249-60.
[52]赵媛, 陈四明, 蒋益兰, 等. Septin-9基因甲基化检测对结直肠癌诊断价值的meta分析[J]. 中国医师杂志, 2020, 22(6):852-856.
Zhao Y, Chen S M, Jiang Y L, et al. Meta-analysis of the diagnostic value of Septin-9 gene methylation in colorectal cancer [J]. Chinese Journal of Physicians, 2020, 22(6):852-856.
[53]王瑞.RASSFIA基因甲基化和肝细胞癌相关性的Meta分析[J]. 中国社区医师,2020,36(18):76-77.
Wang R. Meta-analysis of the relationship between methylation of RASSFIA gene and hepatocellular carcinoma [J]. Chinese Community Physician, 2020, 36(18):76-77.
[54]Yang I, Kim S K, Burke D G, et al. An international comparability study on quantification of total methyl cytosine content[J]. Anal Biochem, 2009, 384(2):288-95.
[55]高运华, 陈鸿飞, 盛灵慧, 等. DNA甲基化定量测量国际比对CCQM P94. 2[J]. 中国测试, 2015, 41(6):47-51.
Gao Y H, Chen H F, Sheng L H, et al. International comparison CCQM P94. 2:quantitative analysis of DNA methylation [J].Chinese Testing,2015,41(6):47-51.
[56]Castro-Wallace S L, Chiu C Y, John K K, et al. Nanopore DNA Sequencing and Genome Assembly on the International Space Station[J].Sci Rep,2017,7(1):18022.
[57]Stoiber M H, Quick J, Egan R, et al. De novo identification of DNA modifications enabled by genome-guided nanopore signal processing[J]. bioRxiv, 2016:094672.
[58]Mann H B, Whitney D R. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other[J]. Annals of Mathematical Stats, 1947, 18(1):50-60.
[59]Liu Q, Georgieva D C, Egli D, et al. NanoMod:a computational tool to detect DNA modifications using Nanopore long-read sequencing data[J]. BMC Genomics, 2019, 20(1):78.
[60]Massey F J. The Kolmogorov-Smirnov Test for Goodness of Fit[J]. Publications of the American Statal Association, 1951, 46(253):68-78.