Attitude Detection of Underwater Vehicle Based on MEMS and Radial Basis Function
ZHANG Chun-yu,LIU Fu-cai,CHENG Xue-cong
Engineering Research Center of the Ministry of Education for Intelligent Control System and Intelligent Equipment, Yanshan University, Qinhuangdao, Hebei 066004, China
Abstract:In order to realize the autonomous motion control of the underwater vehicle, it is very important to master the motion attitude of underwater vehicle accurately. Current micro-electro-mechanical system (MEMS) inertial sensors have small size and low cost. It is widely used in attitude detection systems because of its low power consumption and other characteristics. Due to the complex working environment of the seabed, the underwater vehicle is set to be non-cooperative. Radial basis function neural network algorithm is used to train and classify the detection data. The experimental results show that the average recall rate of micro-electro-mechanical system inertial sensor equipped with radial basis function neural network algorithm for basic behavior recognition of underwater vehicle is 94%, which has certain engineering practical significance.
[1]景元, 吉爱红, 张曦元, 等. 传感器人体运动行为特征识别研究进展[J]. 计算机工程与应用, 2019, (1): 23-28.
Jing Y, Ji A H, Zhang X Y, et al. Development of human action feature recognition using sensors[J]. Computer Engineering and Applications, 2019, 55(1): 23-28.
[2]张烨, 周晓晶, 杨晓童. 基于单目视频的人体运动测量系统[J]. 计量学报, 2019, 40(3): 367-372.
Zhang Y, Zhou X J, Yang X T. Human Motion Measurement System Based on Monocular Videos[J]. Acta Metrologica Sinica, 2019, 40(3): 367-372.
[3]曹玉珍, 蔡伟超, 程旸. 基于MEMS加速度传感器的人体姿态检测技术[J]. 纳米技术与精密工程, 2010, 8(1): 37-41.
Cao Y Z, Cai W C, Cheng Y. Body Posture Detection Technique Based on MEMS Acceleration Sensor[J]. Nanotechnology and Precision Engineering, 2010, 8(1): 37-41.
[4]张丽杰, 常佶. 小型飞行器MEMS姿态测量系统[J]. 振动测试与诊断, 2010, 30(6): 698-702.
Zhang L J, Chang J. MEMS-Based Attitude Measurement System for Miniature Air Vehicle[J]. Vibration testing and diagnosis, 2010, 30(6): 698-702.
[5]Susi M, Renaudin V, Lachapelle G. Motion mode recognition and step detection algorithms for mobile phone users[J]. Sensors, 2013, 13(2): 1539-62.
[6]翟瑞永, 张文栋, 周兆英, 等. SPI串行DataFlash在MEMS姿态测量系统中的应用[J]. 电子技术应用, 2013, 39(8): 37-43.
Zhai R Y, Zhang W D, Zhou Z Y, et al. Application of SPI Data Flash in MEMS attitude measurement system[J]. Electronic technology application, 2013, 39(8): 37-43.
[7]Song J, Hu W K. Experimental Results of Maritime Target Detection Based on SVM Classifier[C]//2020 IEEE 3rd International Conference on Information Communication and Signal Processing(ICICSP). Shanghai, China, 2020:179-182.
[8]马娟娟, 潘泉, 梁彦, 等. 基于深度优先随机森林分类器的目标检测[J]. 中国惯性技术学报, 2018, 26(4): 518-523.
Ma J J, Pan Q, Liang Y, et al. Object detection for depth-first random forest classifier[J]. Journal of Chinese Inertial Technology, 2018, 26(4): 518-523.
[9]陈剑, 蔡坤奇, 陶善勇, 等. 基于IITD模糊熵与随机森林的滚动轴承故障诊断方法[J]. 计量学报, 2021, 42(6): 774-779.
Chen J, Cai K Q, Tao S Y, et al. Fault Diagnosis Method of Rolling Bearing Based on IITD Fuzzy Entropy and Random Forest[J]. Acta Metrologica Sinica, 2021, 42(6): 774-779.
[10]Williams M L, James W P, ROSE M T. Fixed-time data segmentation and behavior classification of pasture-based cattle: Enhancing performance using a hidden Markov model[J]. Computers and Electronics in Agriculture, 2017, 142: 585-596.
[11]刘付强. 船用卫星天线微型姿态测量系统关键技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2008.
[12]蔡春龙, 刘翼, 刘一薇. MEMS仪表惯性组合导航系统发展现状与趋势[J]. 中国惯性技术学报, 2009, 17(5): 562-567.
Cai C L, Liu Y, Liu Y W. Status quo and trend of inertial integrated navigation system based on MEMS[J]. Journal of Chinese Inertial Technology, 2009, 17(5): 562-567.
[13]李媛媛, 张立峰. 多传感器自适应加权融合算法及其应用研究[J]. 自动化与仪器仪表, 2008, (2): 10-13.
Li Y Y, Zhang L F. Research on Multi-sensor Adaptive Weighted Fusion Algorithm and Its Application[J]. Automation and Instrumentation, 2008, (2): 10-13.
[14]潘作舟, 孟宗, 张光雅, 等. 基于相对波动的自适应信号融合算法[J]. 计量学报, 2021, 42(6): 799-805.
Pan Z Z, Meng Z, Zhang G Y, et al. Adaptive Signal Fusion Algorithm Based on Relative Fluctuation[J]. Acta Metrologica Sinica, 2021, 42(6): 799-805.
[15]Cheguini M, Ruiz F. Real-time attitude estimation based on Gradient Descent algorithm[C]//2012 IEEE 4th Colombian Workshop on Circuits and Systems(CWCAS). Barranquilla, Colombia, 2012.
[16]杨华. 多传感器数据融合技术在某新型无人旋翼机中的应用[D]. 南京: 南京航空航天大学, 2019.
[17]Huang J, Lin S, Wang N, et al. Tse-cnn: A two-stage end-to-end cnn for human activity recog-nition[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(1): 292-299
[18]林予松, 马鸽, 刘永鹏, 等. 基于智能手表的人体行为识别研究[J]. 电子设计工程, 2017, 25(4): 27-31.
Lin Y S, Ma G, Liu Y P, et al. Research of human behavior recognition based on smart watch[J]. Electronic Design Engineering, 2017, 25(4): 27-31.
[19]程淑红, 谢文锐, 张典范, 等. 基于多算法融合的跌倒行为识别[J]. 计量学报, 2022, 43(1): 107-113.
Cheng S H, Xie W R, Zhang D F, et al. Fall Action Recognition Based on Computer Vision[J]. Acta Metrologica Sinica, 2022, 43(1): 107-113.
[20]He Q F, Himan S, Shirzadi et al. Landslide spatial modelling using novel bivariate statistical based Nave Bayes, RBF Classifier, and RBF Network machine learning algorithms[J]. Science of the Total Environment, 2019, 663: 1-15.