Numerical Simulation Analysis of Rubidium Lamp Life Prediction and Type Selection Based on ANSYS
YAO Li1,2,WANG Zhou1,2,WANG Xiao-li1,2,GE Jiu-zhi3,TAN Li-cheng1,2,ZHU Xi1,2,TAO Hai-zheng4
1. School of Automotive Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China
2. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of
Technology, Wuhan, Hubei 430070, China
3. Hubei Institute of Measurement and Testing Technology, Wuhan, Hubei 430223, China
4. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, Hubei 430070, China
Abstract:The consumption of metal rubidium in rubidium lamp is the main factor determining the working life of rubidium atomic clock. In order to predict the working life of rubidium lamp, based on the similarity of transient heat conduction equation and unsteady mass diffusion equation in mathematical form, a rubidium diffusion model was established to predict the working life of Schott 8436 glass rubidium lamp by using the finite element software ANSYS, The accuracy of the model is verified by comparing the predicted results of the finite element model with the seven-year rubidium measurement data of Wuhan Institute of physics and mathematics, Chinese Academy of Sciences. Through the verified finite element model, the influence of Schott 8436 glass rubidium bulb volume and external profile curvature on rubidium consumption under the same diffusion area is discussed. The relevant results provide theoretical support for the selection of glass rubidium bulb.
姚力,汪舟,王晓丽,葛久志,谭理成,朱希,陶海征. 基于ANSYS的铷灯寿命预估与选型数值模拟分析[J]. 计量学报, 2022, 43(7): 952-959.
YAO Li,WANG Zhou,WANG Xiao-li,GE Jiu-zhi,TAN Li-cheng,ZHU Xi,TAO Hai-zheng. Numerical Simulation Analysis of Rubidium Lamp Life Prediction and Type Selection Based on ANSYS. Acta Metrologica Sinica, 2022, 43(7): 952-959.
[1]Camparo J C. The Rubidium Atomic Clock and Basic Research [J]. Physics Today, 2007, 60 (11): 33-39.
[2]Volk C H, Frueholz R P, English T C, et al. Lifetime and Reliability of Rubidium Discharge Lamps for Use in Atomic Frequency Standards[C]// 38th Annual Sympo-sium on Frequency Control (IEEE), Philadelphia, USA, 1984.
[3]Volk C H, Frueholz R P. The role of long-term lamp fluctuations in the random walk of frequency behavior of the rubidium frequency standard: A case study [J]. Journal of Applied Physics, 1985, 57 (3): 980-983.
[4]Cook R A, Frueholz R P. An improved rubidium consumption model for discharge lamps used in rubidium frequency standards[C]//Frequency Control Symposium (IEEE), Baltimore, USA, 1988.
[5]涂建辉, 李冠斌, 达道安,等. 铷光谱灯老化过程分析 [J]. 真空与低温, 2006, 12 (3): 173-175.
Tu J H, Li G B, Da D A, et al. Aging analysis of rubidium spectrum lamp [J]. Vacuum and Cryogenics, 2006, 12 (3): 173-175.
[6]冯浩, 崔敬忠. 量热技术在铷光谱灯中的应用研究 [J]. 宇航计测技术, 2014, 34 (3): 22-25.
Feng H, Cui J Z. The Application Study of Differential Scanning Calorimetry Technique in Rubidium Discharge Lamp [J]. Journal of Astronautic Metrology and Measure-ment, 2014, 34 (3): 22-25.
[7]冯浩, 崔敬忠, 翟浩,等. 铷钟光谱灯老化的实验研究和寿命评估 [J]. 时间频率学报, 2015, 38 (1): 1-7.
Feng H, Cui J Z. Zhai H, et al. Aging study and lifetime estimation of rubidium spectrum lamp [J]. Journal of Time and Frequency, 2015, 38 (1): 1-7.
[8]曾媛. 铷原子频标光谱灯与量子系统小型化研究[D]. 武汉: 中国科学院研究生院 (武汉物理与数学研究所), 2004.
[9]王芳, 赵峰, 吴汉华,等. 铷光谱灯寿命实验研究[C]// 全国时间频率学术会议 (中国计量测试学会), 宜昌, 2007.
[10]何胜国, 王芳, 赵峰,等. 铷原子钟光谱灯铷量测量和寿命评估 [J]. 计量学报, 2016, 37 (4): 433-436.
He S G, Wang F, Zhao F, et al. Rubidium Mass Measurement and Lifetime Evaluation of the Lamp Bulb of a Rubidium Atomic Clock [J]. Acta Metrologica Sinica, 2016, 37 (4): 433-436.
[11]张翰, 贾力, 崔骊水,等. 多因素耦合影响亚音速喷口强化气体流场分布研究 [J]. 计量学报, 2021, 42 (3): 327-333.
Zhang H, Jia L, Cui L S, et al. Multi-Factor Coupling Effect of Subsonic Nozzle on Gas Flow Distribution [J]. Acta Metrologica Sinica, 2021, 42 (3): 327-333.
[12]刘若璇, 朱洺征, 沈昱明. 恒定壁温pVTt标准容器气体质量模拟与实验 [J]. 计量学报, 2020, 41 (2): 179-184.
Liu R X, Zhu M Z, Shen Y M. Numerical Simulation and Experiment of Gas Mass in pVTt Standard Containerunder Isothermal Boundary Condition [J]. Acta Met-rologica Sinica, 2020, 41 (2): 179-184.
[13]赵文韬, 承磊, 沈惠峰,等. 基于传热学的低气压/真空综合环境试验设备校准技术研究 [J]. 计量学报, 2019, 40 (4): 676-680.
Zhao W T, Cheng L, Shen H F, et al. Study on Calibration of Low Pressure/Vacuum Comprehensive Environmental Test Equipment Based on Heat Transfer Theory [J]. Acta Metrologica Sinica, 2019, 40 (4): 676-680.
[14]刘正刚, 杜广生, 刘丽萍. 动量式气体流量计内部流场特性与测量性能研究 [J]. 计量学报, 2019, 40 (1): 124-129.
Liu Z G, Du G S, Liu L P. Study on Internal Flow Field and Measurement Performance of Momentum Gas Flow-meter [J]. Acta Metrologica Sinica, 2019, 40 (1): 124-129.
[15]吕波, 徐良旺. 基于磁流体动力学的电磁流量计数值模拟 [J]. 计量学报, 2012, 33 (6): 519-522.
Lü B, Xu L W. Numerical Simulation of Electroma-gnetic Flowmeter Based on Magnetohydradynamics and Computational Fluid Dynamics [J]. Acta Metrologica Sinica, 2012, 33 (6): 519-522.
[16]王庆艳. 国产铷光谱灯用GG17玻璃辐照损伤及铷消耗机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
[17]陈志红. 被动型铷原子频标光谱灯优化设计及频标相关技术[D]. 武汉: 中国科学院研究生院(武汉物理与数学研究所), 2001.
[18]莫鼎成, 肖雅龄. 关于菲克第二定律解的适用范围讨论 [J]. 化学通报, 1990, 53 (6): 50-51.
Mo D C, Xiao Y L. Discussion on the applicable range of the solution of Ficks second law [J]. Chemistry, 1990, 53 (6): 50-51.
[19]Bergman T, Lavigne A, Incropera F, et al. Fundamen-tals of heat and mass transfer[M]. 7th ed. New York: John Wiley and Sons, 2011.