Bounds on Least-Squares Four-Parameter Sine-Fit Errors due to 8bit Quantization
LIANG Zhi-guo
National Key Laboratory of Science and Technology on Metrology & Calibration, Beijing Changcheng Institute of Metrology and Measurement, Beijing 100095, China
Abstract:Aiming at the influence of the quantization error on the four-parameter sinusoidal fitting error, the fitting error bounds were searched on the five parameters of effective bits, amplitude, frequency, initial phase and DC component.The selected condition variables were amplitude, the number of cycles of the waveform contained in the sequence, the initial phase, the DC component and the number of sequence data points.The error boundary search was carried out in a two-condition combination styles, and the error curves of the above five parameters were gained with each condition, including both the upper and the lower error bounds.The result can be used to estimate the error and uncertainty of the fitting parameters, or to construct the measurement conditions under the hoping fitting error and uncertainty.
[1]IEEE Std 1057—1994 IEEE standard for digitizing wav-eform recorders[S]. 1994.
[2]梁志国, 孙璟宇. 正弦波模型化测量方法及应用 [J]. 计测技术, 2001, 21 (6): 3-7.
Liang Z G, Sun J Y. Sine Wave Modeling Measuring Methods and Its Applications[J]. Metrology & Measurement Technology, 2001, 21 (6): 3-7.
[3]梁志国.非均匀采样条件下残周期正弦波形的最小二乘拟合算法[J]. 计量学报, 2021, 42(3): 358-364.
Liang Z G. The Sinewave Fit Algorithm Based on Total Least-Square Method with Partial Period Waveforms and Non-uniform Sampling[J]. Acta Metrologica Sinica, 2021, 42(3): 358-364.
[4]齐国清, 吕健. 正弦曲线拟合若干问题探讨 [J]. 计算机工程与设计, 2008,29 (14): 3677-3680.
Qi G Q, Lv J. Investigation of sine wave fitting algorithms[J]. Computer Engineering and Design, 2008, 29 (14): 3677-3680.
[5]王慧. HHT方法及其若干应用研究 [D]. 合肥:合肥工业大学, 2009.
[6]桑龙, 陈静. 基于正弦曲线拟合算法的ADC测试改进方法 [J]. 电讯技术, 2010, 50 (2): 69-72.
Sang L, Chen J. Improved ADC Measurement approach Based on sine wave fitting[J]. Telecommunication engineering, 2010, 50 (2): 69-72.
[7]梁志国, 王雅婷, 吴娅辉. 基于四参数正弦拟合的放大器延迟时间的精确测量 [J]. 计量学报, 2019, 40 (6): 1101-1106.
Liang Z G, Wang Y T, Wu Y H. The precise measurement method for delay of amplifiers based on four-parameter sinusoidal curve-fit method[J]. Acta Metrologica Sinica , 2019, 40 (6): 1101-1106.
[8]梁志国, 邵新慧. 基于残周期正弦拟合的振动参数测量 [J]. 振动与冲击, 2013, 32 (18): 91-94.
Liang Z G, Shao X H. Vibration Parameters Measurement Method Based on Partial Period Sinusoidal Curve-fitting[J]. Journal of Vibration and Shock, 2013, 32 (18): 91-94.
[9]林俊武. 高速A/D转换的动态精度研究 [D]. 福州: 福州大学, 2005.
[10]梁志国, 武腾飞, 张大鹏, 等. 残周期正弦波拟合中信噪比影响的实验研究 [J]. 计量学报, 2013, 34 (5): 474-479.
Liang Z G, Wu T F, Zhang D P, et al. The Influence of SNR of Waveforms to Sinusoidal Curve-fit in Partial Period[J]. Acta Metrologica Sinica, 2013, 34 (5): 474-479.
[11]Handel P. Properties of the IEEE-STD-1057 four-parameter sine wave fit algorithm [J]. IEEE Transactions on Instrumentation and Measurement, 2000, 49 (6): 1189-1193.
[12]梁志国, 朱振宇. 非均匀采样正弦波形的最小二乘拟合算法 [J]. 计量学报, 2014, 35 (5): 494-499.
Liang Z G, Zhu Z Y. The Sinewave Fit Algorithm Based on Total Least-square Method with Nonuniform Sampl-ing [J]. Acta metrologica sinica, 2014, 35 (5): 494-499.
[13]IEEE Std 1241-2010 IEEE Standard for Terminology and Test Methods for Analog-to-Digital Converters[S].
[14]梁志国. 正弦波形参量对ADC有效位数评价的影响 [J]. 计量学报, 2017, 38 (1): 91~97.
Liang Z G. The influence of Sinusoidal Parameters in Evaluation of Effective Bit of ADC Converts by Curve-fit Method[J]. Acta metrologica sinica, 2017, 38 (1): 91-97.
[15]张智慧. ADC的测量不确定度评估方法研究 [D]. 西安: 陕西科技大学, 2015.
[16]Deyst J P, Sounders T M, Solomon O M. Bounds on Least-Squares Four-Parameter Sine-Fit Errors Due to Harmonic Distortion and Noise[J]. IEEE Transaction on Instrumentation & Measurement, 1994, 44 (3): 637-642.
[17]梁志国. 正弦波拟合参数的不确定度评定 [J]. 计量学报, 2018, 39 (6): 888-894.
Liang Z G. The measurement uncertainty of curve-fit parameters of sinusoidal[J]. Acta metrologica sinica, 2018, 39 (6): 888-894.
[18]陈淑红, 袁晓峰, 余维荣, 等. 曲线拟合法失真度测量的不确定度分析 [J]. 计算机测量与控制, 2005, 13 (4): 317-320.
Cheng S H, Yuan X F, Yu W R, et al. Research on uncertainty analysis of distortion measurement based on curve-fit method[J]. Computer Measurement & Control, 2005, 13 (4): 317-320.
[19]梁志国, 孙璟宇. 动态有效位数评价结果的不确定度 [J]. 计量技术, 2000, (5): 49-51.
Liang Z G, Sun J Y. Uncertainty of Evaluation Result of Effective Bits[J]. Measurement Technique, 2000, (5): 49-51.
[20]Chiorboli G, Franco G. Uncertainties in quantization-noise estimates for analog-to-digital converters[J]. IEEE Transactions on Instrumentation and Measurement,1997, 46 (1): 56-60.
[21]梁志国, 朱济杰. 量化误差对周期信号总失真度评价的影响及修正 [J]. 仪器仪表学报, 2000, 21 (6): 640-643.
Liang Z G, Zhu J J. The Correction of the Quantization Error of the Evaluation of the Distortion of Periodic Signal[J]. Chinese Journal of Scientific Instrument, 2000, 21 (6): 640-643.