Abstract:A method was proposed for analyzing hydrogen fluoride (HF) standard gas with low concentrations by using FTIR, of which the characteristic absorption region between 4100~4300cm-1 was used to identify and determine HF. A series of gas mixtures were prepared through the dilution of a mother cylinder standard, and produced 6 lower concentrations: 120, 100, 80.0, 60.0, 40.0, 20.0μmol/mol. Furtherly, the repeatability, linearity, and limit of detection (LOD) were evaluated. The results showed that the response value of the instrument is linear with the concentration of standard gas in the range of 20.0~120μmol/mol, and R2 is 0.9979; the repeatability of each concentration point is between 0.34%~1.1%; the detection limit is about 2.04μmol/mol.
李龙,张体强,姚强,胡树国,邱妮,邓保家,张盈,张施令,盖良京. 低浓度氟化氢标准气体的FTIR分析方法研究[J]. 计量学报, 2022, 43(3): 433-436.
LI Long,ZHANG Ti-qiang,YAO Qiang,HU Shu-guo,QIU Ni,DENG Bao-jia,ZHANG Ying,ZHANG Shi-ling,GAI Liang-jing. Use of FTIR for Analyzing Hydrogen Fluoride Standard Gas at Low Concentrations. Acta Metrologica Sinica, 2022, 43(3): 433-436.
[1]王鹏. 氟化氢在有机合成中的应用 [J]. 化学与黏合, 2017, 39(6): 448-450.
Wang P. Application of Hydrogen Fluoride in Organic Synthesis [J]. Chemistry and Adhesion, 2017, 39(6): 448-450.
[2]浙江省氟化学工业协会. 我国无水氟化氢生产现状统计 [J]. 浙江化工, 2019, 50(3): 5+54.
[3]张春港. 氟化氢泄漏中毒的风险防范 [J]. 中国石油和化工标准与质量, 2019, 39(19): 189-190.
[4]GBZ 2. 1-2019 工作场所有害因素职业接触限值 第 1 部分: 化学有害因素 [S].
[5]应自卫, 王学真, 徐贤统. 无水氟化氢生产过程中“废气”治理提升实践 [J]. 无机盐工业, 2020, 52(10): 117-120.
Ying Z W, Wang X Z, Xu X T. Practice on Upgraded Disposal of Exhaust Gas from Production Process of Anhydrous Hydrogen Fluoride[J]. Inorganic Chemicals Industry, 2020, 52(10): 117-120.
[6]GB 31573-2015 无机化学工业污染物排放标准 [S].
[7]HJ/T 67-2001大气固定污染源 氟化物的测定 离子选择电极法 [S].
[8]HJ 480-2009 环境空气 氟化物的测定 滤膜采样氟离子选择电极法 [S]
[9]HJ 481-2009 环境空气 氟化物的测定 石灰滤纸采样氟离子选择电极法 [S].
[10]HJ 688-2019 固定污染源废气 氟化氢的测定 离子色谱法 [S].
[11]黄振荣, 陈渊. 便携式傅里叶变换红外多组分气体分析仪在环境应急监测中的应用研究 [J]. 环境科学与管理, 2015, (12): 133-135.
Huang Z R, Chen Y. Application of Portable FTIR in Determining Multicomponent Gas of Environmental Emergency Monitoring[J]. Environmental Science And Management, 2015, (12): 133-135.
[12]王德发,周枫然,叶菁,等. FTIR在气体标准物质研究中的应用[J]. 计量科学与技术, 2021, 65(5): 67-76.
Wang D F, Zhou F R, Ye J, et al. Application of FTIR in the Research on Gas Reference Materials[J]. Metrology Science and Technology, 2021, 65(5): 67-76.
[13]王德发, 周泽义, 刘沂玲, 等. 利用傅立叶变换红外光谱法检测一氧化氮纯气中的氧化亚氮杂质 [J]. 化学分析计量, 2008, 17(6): 18-21.
Wang D F, Zhou Z Y, Liu Y L, et al. Determination of Impurity N;2O Gas in Pure NO by FTIR [J]. Chemical Analysis and Meterage, 2008, 17(6): 18-21.
[14]Viallon J, Flores E, Moussay P, et al. An Optimized Sampling System for Highly Reproducible Isotope Ratio Measurements (δ13C and δ18O) of Pure CO;2 Gas by Infrared Spectroscopy [J]. Metrologia, 2020, 57(5): 1-9.
[15]Flores E, Viallon J, Moussay P, et al. Calibration Strategies for FT-IR and Other Isotope Ratio Infrared Spectrometer Instruments for Accurate δ13C and δ18O Measurements of CO;2 in Air [J]. Analytical Chemistry, 2017, 89(6): 3648-3655.
[16]李剑, 王德发, 夏春, 等. 用于低浓度NO;2精确测量的傅里叶变换红外光谱系统研究 [J]. 计量学报, 2019, 40(3): 517-521.
Li J, Wang D F, Xia C, et al. Research on a FTIR System for Accurate Measurement of Low Concentration NO;2 [J]. Acta Metrologicala Sinica, 2019, 40(3): 517-521.
[17]ISO 6142-1: 2015 Gas Analysis—Preparation of Calibration Gas Mixtures—Part 1: Gravimetric Method for Class I Mixtures [S].
[18]ISO 17034:2016 General Requirements for the Competence of Reference Material Producers [S].
[19]王德发, 张体强, 韩桥, 等. 二氧化碳中全氟异丁腈气体标准物质的研制 [J]. 计量学报, 2021, 42(1): 123-128.
Wang D F, Zhang T Q, Han Q, et al. Research on Gas Reference Material of C;4F;7N in Carbon Dioxide [J]. Acta Metrologicala Sinica, 2021, 42(1): 123-128.
[20]胡树国, 张体强. 高纯氦气中杂质标准物质的研制 [J]. 计量学报, 2018, 39(6): 908-913.
Hu S G, Zhang T Q. Development of Impurity Reference Materials in High Purity Helium [J]. Acta Metrologicala Sinica, 2018, 39(6): 908-913.