1. School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
2. National Institute of Metrology, Beijing 100029, China
3. Zhengzhou Institute of Metrology, Zhengzhou, Henan 450001, China
Abstract:Industry plants are the main traders in China's carbon trading market.Due to the large amount of default data used in carbon verification, the credibility of emissions data is reduced, and the uncertainty of emissions data has not been evaluated.After measuring the carbon emissions of 6 enterprises in 3 industries, the uncertainty of the carbon emissions data calculated by default value, measured value and their combination are analyzed and studied by using the Monte Carlo (MC) uncertainty evaluation method.The results show that, compared with the default values, only measuring low calorific value (using oxygen bomb calorimetry) can reduce the uncertainty by 9.0%.When the industrial analysis method is used to measure the low calorific value, the emission uncertainty can be reduced by 8.3%.Measuring low calorific value (using oxygen bomb calorimetry), and the carbon content can reduce the uncertainty by 16.6%.Measuring low calorific value (using oxygen bomb calorimetry), the carbon content and carbon oxidation rate can reduce the uncertainty by 16.9%.If all parameters are measured, the uncertainty can be reduced by 17.1%.
[1]姜晓群, 王力, 周泽宇, 等. 关于温室气体控制与大气污染物减排协同效应研究的建议 [J]. 环境保护, 2019, 47 (19): 31-35.
Jiang X Q, Wang L, Zhou Z Y, et al.Suggestions on Co-benefits Between GHG Emission Control and Air Po-llutant Reduction [J]. Environmental Protection, 2019,47 (19): 31-35.
[2]龚颖, 王红涛.发电企业温室气体核算方法与报告指南对比研究 [J]. 化学工程与装备, 2015 (3):234-236.
Gong Y, Wang H T. Comparative study on greenhouse gas accounting methods and reporting guidelines for power generation companies [J]. Chemical Engineering & Equipment, 2015 (3): 234-236.
[3]刘宏强, 付建勋, 刘思雨, 等. 钢铁生产过程二氧化碳排放计算方法与实践 [J]. 钢铁, 2016, 51 (4): 74-82.
Liu H Q, Fu J X, Liu S Y, et al. Calculation methods and application of carbon dioxide emission during steel-making process [J]. Iron an Steel, 2016, 51 (4): 74-82.
[4]刘园园, 杨健, 赵希勇,等. GUM法和MCM法评定测量不确定度对比分析[J]. 计量学报, 2018, 39 (1): 135-139.
Liu Y Y, Yang J, Zhao X Y, et al. Comparative Analysis of Unc-ertainty Measurement Evaluation with GUM and MCM [J]. Acta Metrologica Sinica, 2018, 39 (1): 135-139.
[5]王朋朋,程杰,张艳昆,等. 0.005级压力式水深测量仪器检定装置的测量不确定度评定[J]. 计量学报, 2021, 42(8): 1053-1060.
Wang P P, Cheng J, Zhang Y K, et al. Evaluation of Measurement Uncertainty of Level 0.005 Pressure Type Water Depth Measuring Instrument Verification Device[J]. Acta Metrologica Sinica, 2021, 42(8): 1053-1060.
[6]胡红波, 孙桥, 杜磊, 等. GUM与基于观测方程的测量不确定度评估 [J]. 计量学报, 2017, 38 (5): 656-660.
Hu H B, Sun Q, Du L, et al. GUM and Analysis of Measurement Uncertainty Evaluation Using Obervation Equetion [J]. Acta Metrologica Sinica,2017, 38 (5): 656-660.
[7]刘存成, 胡畅. 基于MATLAB用蒙特卡洛法评定测量不确定度 [M]. 北京: 中国质检出版社, 2014.
[8]JJF 1059.2—2012用蒙特卡洛法评定测量不确定度[S].
[9]GB/T 32151.1—2015温室气体排放核算与报告要求第1部分: 发电企业 [S].
[10]GB/T 32151.8—2015温室气体排放核算与报告要求第8部分: 水泥生产企业 [S].
[11]GB/T 32151.9—2015温室气体排放核算与报告要求第9部分: 陶瓷生产企业 [S].
[12]GB/T 213—2008煤的发热量测定方法 [S].
[13]GB/T 476—2008煤中碳和氢的测定方法 [S].
[14]GB/T 474—2008煤样的制备方法 [S].
[15]刘庆, 李学康, 曾慧琴. 锅炉能效测试中检测质量的控制[J]. 计量与测试技术, 2013, 40 (7): 91-92.
Liu Q, Li X K, Zeng H Q.Boiler Energy Efficiency Test of Quality Control[J]. Metrology & Measurement Technique, 2013, 40 (7): 91-92.
[16]刘福国, 崔福兴. 电厂锅炉入炉煤采制样不确定度分析与模拟 [J]. 计量学报, 2019, 40 (4): 603-609.
Liu F G, Cui F X. Analysis and Simulation of Coal Sampling Uncertainty in Coal-fired Utility Boiler [J]. Acta Metrologica Sinica, 2019, 40 (4): 603-609.
[17]马若梦, 林鸿, 张亮, 等. 基于多次反射直接吸收精确测量二氧化碳浓度的研究[J]. 计量学报, 2020, 41(4): 425-429.
Ma R M, Lin H, Zhang L, et al. Measurement of Carbon Dioxide Concentration Based on Multi-pass Absorption Technology[J]. Acta Metrologica Sinica, 2020, 41(4): 425-429.
[18]GB/T 17167—2006用能单位能源计量器具配备和管理通则[S].