1. College of Quality & Technology Supervising, Hebei University, Baoding, Hebei 071000, China
2. National and Local Joint Engineering Research Center for Metrology Instruments and Systems, Baoding, Hebei 071000, China
3. Measuring Instruments and Systems Engineering Laboratory of Hebei Province, Baoding, Hebei 071000, China
4. The Center of Measuring Instruments and Systems Engineering and Technology of Baoding, Baoding, Hebei 071000, China
Abstract:The stability of near-infrared (NIR) light source influences the reliability of NIR technology. Improving the stability of NIR power supply can improve the application of NIR technology in gas-liquid two-phase flow in laboratory. According to the experiment, the precise constant current source is used to power the NIR probe, which makes the NIR light source more stable and the output voltage more stable and reliable. The experiment shows that the range of output voltage is about 0.12 and the standard deviation is not more than 0.00838 when using high precision constant current source for power supply. While the range of output voltage obtained from ordinary power supply is about 0.16, and the standard deviation is no more than 0.02193.
[1]汪紫阳, 李耀翔, 尹世逵. 应用近红外光谱技术检测木材含水率的方法[J]. 东北林业大学学报, 2018, 46 (12): 82-86.
Wang Z Z, Li Y X, Yin S K. Determination of wood moisture content by near infrared spectroscopy[J]. Journal of Northeast Forestry University, 2018, 46 (12): 82-86.
[2]王帅, 冯新泸, 管亮. 近红外光谱仪光源稳定性的控制研究 [J]. 计算机与应用化学, 2010, 27 (12): 1687-1690.
[3]Wang S, Feng X L, Guan L. Study on control of light source stability of near infrared spectrometer[J]. Computer and Applied Chemistry, 2010, 27 (12): 1687-1690.
[4]孙玉洋. 近红外光源稳定控制系统及应用研究[D]. 长春: 吉林大学, 2015.
[5]Heman A, Hsieh C L. Measurement of Moisture Content for Rough Rice by Visible and Near-Infrared (NIR) Spectroscopy[J]. Engineering in Agriculture, Environment and Food, 2016, 9(3): 280-290.
[6]Clavaudab M, Roggoa Y, Dégardina K, et al. Global regression model for moisture content determination using near-infrared spectroscopy[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 119:343-352.
[7]王东星. 基于矩形差压流量计的近红外系统结构优化及测量模型研究[D]. 保定: 河北大学, 2018.
[8]李婷婷. 轴向安装的近红外系统气液两相流测量特性[D]. 保定: 河北大学, 2017.
[9]梁玉娇. 基于近红外吸收特性的气液两相含率检测方法研究[D]. 保定: 河北大学, 2014.
[10]周南权. 基于红外成像光学系统的光源设计研究[D]. 重庆: 重庆大学, 2008.
[11]Sone Y, Fukumoto K, Ebisawa Y. Robustness Improvement in Remote Gaze Detection System by Automatic Light Power Control of Near-Infrared Light Source[C]//Proceedings of the Ite Winter Annual Convention, 2014:11-5-1-11-5-2.
[12]Wang R, Fu Q B, Suo H, et al. Design of programmable near infrared cold light source[C]//2011 International Conference on Electronics and Optoelectronics (ICEOE). Dalian, China, 2011.
[13]曲岩,宦克为,安保林, 等. 主动式双波长红外激光测温标定实验研究[J]. 计量学报, 2021, 42(2): 137-143.
Qu Y, Huan K W, An B L, et al. Study on Active Dual-wavelength Unfrared Laser Thermometry Calibration Experiments[J]. Acta Metrologica Sinica, 2021, 42(2): 137-143.
[13]邵春滕, 宦克为, 李志彬, 等. 基于激光积分球反射计的集成黑体发射率测量研究[J]. 计量学报, 2019, 40(3): 427-431.
Shao C T, Huan K W, Li Z B. Research on integrated blackbody emissivity measurement based on laser integrating sphere reflectometer [J]. Acta Metrologica Sinica, 2019, 40(3): 427-431.
[14]刘宏岩, 徐东明. 压控恒流源电路分析 [J]. 无线互联科技, 2018, 15(2): 74-75.
Liu H Y, Xu D M. Analysis of voltage controlled constant current source circuit [J]. Wireless interconnection technology, 2008, 15 (2): 74-75.
[15]Maham K, Vaskuri A, Manoocheri F, et al. Calibration of Near-Infrared Detectors Using a Wavelength Tunable Light Source[J]. Optical Review, 2020(prepublish), 1-7.
[16]Asano Y, Zheng Y Q, Nishino K, et al. Depth Sensing by Near-Infrared Light Absorption in Water[J]. IEEE transactions on pattern analysis and machine intelligence, 2021,43(8):2611-2622.
[17]周杨, 戴曙光, 等. 近红外光谱小波投影寻踪回归定量分析方法研究[J]. 计量学报, 2013, 34(2): 184-186.
Zhou Y, Dai S G, et al. The wavelet projection pursuit regression method of near-infrared spectroscopy calibration [J]. Acta Metrologica Sinica, 2013, 34(2): 184-186.