1. Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
2. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
3. University of South China, Hengyang,Hunan 421001, China
Abstract:Aiming at the tritiated methane as the gas reference source for the calibration of airborne tritium monitor, a method for measuring its volume radioactivity is proposed. Tritiated methane is transformed into tritiated water by catalytic oxidation combustion furnace. Tritiated water is collected by two-stage series bubbler, and measured by liquid scintillation counter.Finally, the volume activity of tritiated methane is determined, and the uncertainty is analyzed.Implementing the above method, the volume radioactivity of the tritiated methane in lab and its expanded uncertainty are determined to be 17.4MBq/m3and 6.4% (k=2) separately, which meet the requirements for gaseous reference source according to GBT 30150-2013.The calibration experiment for a commercial airborne tritium monitor is conducted with the tritiated methane in lab, in which the calibration factor is 0.88. It indicates that the proposed method can provide a practical and credible technical basis for airborne tritium monitor calibration.
[1] Ducros L, Eyrolle F, Vedova C D, et al. Tritium in river waters from French Mediterranean catchments: Background levels and variability[J]. Science of the Total Environment, 2018, 612: 672-682.
[2] Varlam C, Patrascu V, Margineanu R M, et al. Tritium activity concentration along the western shore of the Black Sea[J]. Journal of Radioanalytical & Nuclear Chemistry, 2013, 298(3): 1679-1683.
[3] United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Effects of ionizing radiation[R]. 2006.
[4] 洪永侠, 程瑛, 漆明森, 等. 气载氚监测仪现场校准技术[J]. 核化学与放射化学, 2016, 38(1): 38-42.
Hong Y X, Cheng Y, Qi M S, et al. Field Calibration Technique of Gas Tritium Monitor[J]. Journal of Nuclear and Radiochemistry, 2016, 38(1): 38-42.
[5] 连晓雯. 基于正比计数器的气态氚测量及标定方法研究[D]. 成都: 成都理工大学, 2014.
[6] GB/T 30150-2013 辐射防护仪器 气载氚监测设备[S].
[7] GB/T 7165.5-2008 气态排出流(放射性)活度连续监测设备. 第5部分: 氚监测仪的特殊要求[S].
[8] Kushita K, Hoizumi K. Radioisotopes in the Physical Sciences and Industry[C]//The 20th Annual Meeting on Radioisotopes in the Physical Sciences and Industry, 1983.
[9] Kushita K, Takeuchi N, Hoizumi K. Preparation of tritium standard gas by the use of tritiated methane[J]. Radioisotopes, 1985, 34(1): 1-6.
[10] 徐庆松, 秦来来, 刘卫, 等. 甲烷供给模块的设计与性能研究[J]. 辐射研究与辐射工艺学报, 2019, 37(3): 030702(1)-030702(6).
Xu Q S, Qin L L, Liu W, et al. Study on design and performance of a novel methane supply module[J]. Journal of Radiation Research and Radiation Processing, 2019, 37(3): 030702(1)-030702(6).
[11] 耿亮, 霍晶. 气相色谱法测定甲烷的方法研究[J]. 广州化工, 2013, 41(13): 149-150.
Geng L, Huo J. Gas Chromatography Method for Determination of Methane[J]. Guangzhou Chemical Industry, 2013, 41(13): 149-150.
[12] 陈闽, 王晓英, 宋江锋, 等. IRMS定量分析超轻水中氘同位素[J]. 核化学与放射化学, 2015, 37(6): 447-451.
Chen M, Wang X Y, Song J F, et al. Deuterium quantitative analysis of deuterium depleted water (DDW) by IRMS[J]. Journal of Nuclear and Radiochemistry, 2015, 37(6): 447-451.
[13] 颜耕, 周磊, 陈玲. 同位素技术在环境科学研究中的应用进展[J]. 环境监测管理与技术, 2018, 30(2): 1-4.
Yan G, Zhou L, Chen L. Progress of Applying Isotope Technology in the Studies of Environmental Science[J]. The Administration and Technique of Environmental Monitoring, 2018, 30(2): 1-4.
[14] JJF 1059.1-2012 测量不确定度评定与表示[S].
[15] 李晓芸, 潘竞舜, 娄海林, 等. 用液闪直接测量核设施周围环境中的氚[J]. 辐射防护, 2019, 245(2): 26-32.
Li X Y, Pan J S, Lou H L, et al. Measurement of released tritium from nuclear facilities by direct liquid scintillation counting[J]. Radiation Protection, 2019, 245(2): 26-32.
[16] 陆小军, 忻智炜, 何林锋. 塑闪型车载式放射性探测系统的最小可探测活度的估算[J]. 计量学报, 2020, 41(5): 627-632.
Lu X J, Xin Z W, He L F. Estimation of the minimum detectable activity of a plastic scintillator type car-borne radioactive detection system[J]. Acta Metrologica Sinica, 2020, 41(5): 627-632.
[17] 刘佳煜, 忻智炜, 李小双, 等. 基于NaI(Tl)谱仪实现气载放射性碘制备产率的连续测量系统[J]. 核技术, 2019, 42(12): 36-42.
Liu J Y, Xin Z W, Li X S, et al. Development of a successive yield measurement system for airborne radioiodine generation using NaI(Tl) spectrometer[J]. Nuclear Techniques, 2019, 42(12): 36-42.