Abstract:Bearing vibration data is susceptible to noise interference during the acquisition process and cannot effectively highlight weak local fault pulses, thereby affecting the efficiency of bearing fault diagnosis. To solve this problem, an ovmd-mpe group sparse total variational denoising algorithm (OVMD-MPE-GSTVD) is proposed. Firstly, variational model decomposition is used to decompose the signal, and then the optimal parameters of variational model decomposition are obtained by grasshopper optimization algorithm. Then, calculate the empirical model decomposition of each modal component to separate the noise dominant component and the useful component. Finally, the dominant component of the noise is filtered by group sparse total variational denoising algorithm, and the filtered component and useful component are combined to reconstruct the denoising signal. The experimental results show that compared with the traditional denoising method, the average signal-to-noise ratio of the simulated reconstructed signal is improved by about 3.3dB, the bearing data fault accuracy is increased to 98.9%.
[1] 张金凤, 李继猛, 杨莹, 等. 基于改进耦合增强随机共振的滚动轴承故障诊断[J]. 计量学报, 2019, 40(3): 385-391.
Zhang J F, Li J M, Yang Y, et al. Rolling Bearing Fault Diagnosis Based on Improved Coupling-enhanced Stochastic Resonance[J]. Acta Metrologica Sinica, 2019, 40(3): 385-391.
[2] 陈剑, 庄学凯, 吕伍佯, 等. 基于IVMD和马田系统的滚动轴承故障检测方法[J]. 计量学报, 2019, 40(6): 1083-1087.
Chen J, Zhuang X K, Lü W Y, et al. Fault Diagnosis of Rolling Bearing Using Mahalanobis-Taguchi System Based on IVMD[J]. Acta Metrologica Sinica, 2019, 40(6): 1083-1087.
[3] 徐帆, 常建华, 刘秉刚, 等. 基于VMD的激光雷达回波信号去噪方法研究[J]. 激光与红外, 2018, 48(11): 1443-1448.
Xu F, Chang J H, Liu B G, et al. De-noising method research for lidar echo signal based on variational mode decomposition[J]. Laser & Infrared, 2018, 48(11): 1443-1448.
[4] 许军才, 任青文, 黄临平. 基于变分模态分解的探地雷达信号分析方法[J]. 河海大学学报自然科学版, 2018, 46(6): 545-550.
Xu J C, Ren Q W, Huang L P. GPR signal analysis method based on variational mode decomposition[J]. Journal of Hohai University(Natural Sciences), 2018, 46(6): 545-550.
[5] 刘备, 胡伟鹏, 邹孝, 等. 基于变分模态分解与多尺度排列熵的生物组织变性识别[J]. 物理学报, 2019, 68(2): 253-261.
Liu B, Hu W P, Zhou X, et al. Recognition of denatured biological tissue based on variational mode decomposition and multi-scale permutation entropy[J]. Acta Physica Sinica, 2019, 68(2): 253-261.
[6] Dragomiretskiy K, Zosso D. Variational Mode Decomposition[J]. IEEE Transactionson Signal Processing, 2014, 62(3): 531-544.
[7] 刘尚坤, 唐贵基, 王晓龙. 基于改进变分模态分解的旋转机械故障时频分析方法[J]. 振动工程学报, 2016, 29(6): 1119-1126.
Liu S K, Tang G J, Wang X L. Time frequency analysis method for rotary mechanical fault based on improved variational mode decomposition[J]. Journal of Vibration Engineering, 2016, 29(6): 1119-1126.
[8] 郑小霞, 陈广宁, 任浩翰, 等. 基于改进VMD和深度置信网络的风机易损部件故障预警[J]. 振动与冲击, 2019, 38(8): 153-160, 179.
Zheng X X, Chen G N, Ren H H, et al. Fault detection of vulnerable units of wind turbine based on improved VMD and DBN[J]. Journal of Vibration and Shock, 2019, 38(8): 153-160, 179.
[9] 刘涛, 马转霞, 杜楠. 多尺度排列熵在涡旋压缩机故障诊断中的应用[J]. 兰州理工大学学报, 2018, 44(1): 42-46.
Liu T, Ma Z X, Du N. Application of multi-scale permutation entropy to fault diagnosis of scroll compressor[J]. Journal of Lanzhou University of Technology, 2018, 44(1): 42-46.
[10] 陈东宁, 张运东, 姚成玉, 等. 基于变分模态分解和多尺度排列熵的故障诊断[J]. 计算机集成制造系统, 2017, 23(12): 2604-2612.
Chen D N, Zhang Y D, Yao C Y, et al. Fault diagnosis method based on variational mode decomposition and multi-scale permutation entropy[J]. Computer Integrated Manufacturing Systems, 2017, 23(12): 2604-2612.
[11] Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(1): 259-268.
[12] 余丽红, 曹蕾, 柳贵东, 等. PCB图像的自适应全变分去噪算法[J]. 红外技术, 2018, 40(9): 875-880.
Yu L H, Cao L, Liu G D, et al. An Adaptive Total Variation Denoising Algorithm for Printed Circuit Board Images[J]. Infrared Technology, 2018, 40(9): 875-880.
[13] 张弘, 周晓莉. 基于小波阈值和全变分模型的图像去噪[J]. 计算机应用研究, 2019, 36(11): 3504-3507, 3520.
Zhang H, Zhou X L. Method for image denoising based on wavelet transform and total variational model[J]. Application Research of Computers, 2019, 36(11): 3504-3507, 3520.
[14] Yi C, Lü Y, Dang Z, et al. A Novel Mechanical Fault Diagnosis Scheme Based on the Convex 1-D Second-Order Total Variation Denoising Algorithm[J]. Applied Sciences, 2016, 6(12): 403.
[15] 朱丹宸, 张永祥, 赵磊, 等. 基于TVD和MSB的滚动轴承故障特征提取[J]. 振动与冲击, 2019, 38(8): 103-109, 125.
Zhu D C, Zhang Y X, Zhao L, et al. Fault feature extraction of rolling element bearings based on TVD and MSB[J]. Journal of Vibration and Shock, 2019, 38(8): 103-109, 125.
[16] 陈剑, 黄凯旋,吕伍佯, 等. 基于VMD和卷积神经网络的变工况轴承故障诊断方法[J]. 计量学报, 2021, 42(7): 892-897.
Chen J, Huang K X, Lü W Y, et al. Bearing Fault Diagnosis Method Based on VMD and Convolutional Neural Network Undervarying Operation Conditions[J]. Acta Metrologica Sinica, 2021, 42(7): 892-897.
[17] 唐贵基, 王晓龙. 变分模态分解方法及其在滚动轴承早期故障诊断中的应用[J]. 振动工程学报, 2016, 29(4): 638-648.
Tang G J, Wang X L. Variational mode decomposition method and its application on incipient fault diagnosis of rolling bearing[J]. Journal of Vibration Engineering, 2016, 29(4): 638-648.
[18] Saremi S, Mirjalili S, Lewis A. Grasshopper Optimisation Algorithm: Theory and application[J]. Advances in Engineering Software, 2017, 105: 30-47.