Feature extraction of EEG high order tensor based on EEMD
FU Rong-rong1,YANG Yang1,YU Bao1,LIU Chong2,ZHANG Chi3
1. School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
2. College of Mechanical Engineering and Automation, Northeastern University, Shenyang, Liaoning 110819,China
3. School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
Abstract:In view of the shortcomings of 2D principal component analysis (2DPCA)which ignores the frequency domain characteristics of electroencephalography (EEG) and the limitation that wavelet parameters are difficult to determine when constructing EEG high-order tensor based on wavelet decomposition, a feature extraction method based on ensemble empirical mode decomposition (EEMD)and multi linear principal component analysis (MPCA) is proposed. The contrast experiments of three different feature extraction methods are designed, and the classification accuracy is obtained by combining Fisher linear discriminant analysis classification method. The results show that compared with the feature extraction method of constructing high-order tensor based on wavelet decomposition combined with MPCA for dimensionality reduction and 2DPCA, the average recognition accuracy is improved by 4.75% and 2.6% respectively, and the variance of recognition accuracy is reduced by 72.69% and 23.86% respectively. The new feature extraction method not only improves the recognition accuracy of single motor imagery EEG signal, but also has better applicability, which lays the foundation for the realization of motor imagery EEG signal decoding.
付荣荣,杨阳,于宝,刘冲,张驰. 基于集合经验模态分解的脑电信号高阶张量特征提取[J]. 计量学报, 2021, 42(12): 1679-1685.
FU Rong-rong,YANG Yang,YU Bao,LIU Chong,ZHANG Chi. Feature extraction of EEG high order tensor based on EEMD. Acta Metrologica Sinica, 2021, 42(12): 1679-1685.
[1]汲继跃, 佘青山, 张启忠, 等. 最优区域共空间模式的运动想象脑电信号分类方法[J]. 传感技术学报, 2020, 33(1): 38-43.
Ji J Y, She Q S, Zhang Q Z, et al. Classification of motor imagery EEG signals based on optimal regional co spatial pattern[J]. Journal of sensing technology, 2020, 33(1): 38-43.
[2]徐佳琳, 左国坤. 基于互信息与主成分分析的运动想象脑电特征选择算法[J]. 生物医学工程学杂志, 2016, 33(2): 201-207.
Xu J L, Zuo G K. Feature selection algorithm of motor imagery EEG based on mutual information and principal component analysis[J]. Journal of Biomedical Engineering, 2016, 33(2): 201-207.
[3]汪朝海, 蔡晋辉, 曾九孙. 基于经验模态分解和主成分分析的滚动轴承故障诊断研究[J]. 计量学报, 2019, 40(6): 1077-1082.
Wang C H, Cai J H, Zeng j S. Research on rolling bearing fault diagnosis based on empirical mode decomposition and principal component analysis[J]. Acta Metrologica Sinica, 2019, 40(6): 1077-1082.
[4]Lu H, Plataniotis K N, Venetsanopoulos A N. MPCA: Multilinear Principal Component Analysis of Tensor Objects[J]. IEEE Trans Neural Network, 2008, 19(1): 18-39.
[5]王月茹, 李昕, 李红红, 等. 基于时-频-空间域的运动想象脑电信号特征提取方法研究[J]. 生物医学工程学杂志, 2014, 31(5): 955-961.
Wang Y R, Li X, Li H H, et al. Research on feature extraction method of motor imagery EEG signal based on time frequency space domain[J]. Journal of Biomedical Engineering, 2014, 31(5): 955-961.
[6]李继猛, 王慧, 李铭, 等. 基于改进的自适应无参经验小波变换的滚动轴承故障诊断[J]. 计量学报, 2020, 41(6): 710-716.
Li J M, Wang H, Li M, et al. Rolling bearing fault diagnosis based on improved adaptive nonparametric empirical wavelet transform[J]. Acta metrologica Sinica, 2020, 41(6): 710-716.
[7]王金甲, 杨亮. 脑机接口中多线性主成分分析的张量特征提取[J]. 生物医学工程学杂志, 2015, 32(3): 36-40.
Wang J J, Yang L. Tensor feature extraction of multi linear principal component analysis in brain computer interface[J]. Journal of Biomedical Engineering, 2015, 32(3): 36-40.
[8]郑慧峰, 曹文旭, 王月兵, 等. 基于经验模态分解的聚焦超声非线性声场检测[J]. 计量学报, 2017, 38(5): 616-620.
Zheng H F, Cao W X, Wang Y B, et al. Nonlinear acoustic field detection of focused ultrasound based on empirical mode decomposition[J]. Acta Metrologica Sinica, 2017, 38(5): 616-620.
[8]何群,杜硕,王煜文, 等. 基于变分模态分解与深度信念网络的运动想象分类识别研究[J]. 计量学报, 2020, 41(1): 90-99.
He Q, Du S, Wang Y W, et al. The Classification of EEG Induced by Motor Imagery Based on Variational Mode Decomposition and Deep Belief Network[J]. Acta Metrologica Sinica, 2020, 41(1): 90-99.
[9]Zheng J D, Cheng J S, Yang Y. Modified EEMD algorithm and its applications[J]. Journal of Vibration and Shock, 2013, 32(21): 21-26.
[10]田晶, 王英杰, 王志, 等. 基于EEMD与空域相关降噪的滚动轴承故障诊断方法[J]. 仪器仪表学报, 2018, 39(7): 144-151.
Tian J, Wang Y J, Wang Z, et al. Rolling bearing fault diagnosis method based on EEMD and airspace related noise reduction[J]. Acta Instrumenta Sinica, 2018, 39 (7): 144-151.
[11]Helske J. Rlibeemd: Ensemble Empirical Mode Decomposition (EEMD) and Its Complete Variant (CEEMDAN)[J]. International Journal of Public Health, 2016, 60(5): 1-9.
[12]Jian Y, David Z, Frangi A F, et al. Two-dimensional PCA: a new approach to appearance-based face representation and recognition. [J]. IEEE Trans Pattern Anal Mach Intell, 2004, 26(1): 131-137.
[13]Asi Z U, Sultan M, Muneer U, et al. Classification of Non-Discriminant ERD/ERS Comprising Motor Imagery Electroencephalography Signals[J]. International Journal of Advanced Computer ence and Applications, 2020, 11(1): 364-375.
[14]朱嘉祺. 分布式脑电信号采集系统研究[J]. 仪器仪表学报, 2020, 27(1): 6-9.
Zhu J Q. Research on distributed EEG signal acquisition system[J]. Acta Instrumenta Sinica,2020,27(1):6-9.
[15]Boudraaa O, Cexus J C. EMD-based Signal Filtering[J]. IEEE Transactions on Instrumentation & Measurement, 2007, 56(6): 2196-2202.
[16]王志芳, 王书涛, 王贵川, 等. 基于小波优化EEMD的二氧化硫检测[J]. 计量学报, 2020, 41(6): 752-758.
Wang Z H, Wang S T, Wang G C, et al. Sulfur dioxide detection based on wavelet optimized EEMD[J]. Acta Metrologica Sinica, 2020, 41(6): 752-758.
[17]樊凤杰,白洋,纪会芳. 基于EEMD-ICA的脑电去噪算法研究[J]. 计量学报, 2021, 42(3): 395-400.
Fen F J, Bai Y, Ji H F. Denoising Method of EEG Signal Based on EEMD-ICA[J]. Acta Metrologica Sinica, 2021, 42(3): 395-400.
[18]付荣荣,米瑞甫,王涵, 等. 基于脑功能网络的脑疲劳状态检测研究[J]. 计量学报, 2021, 42(11): 1528-1533.
Fu R R, Mi R F, Wang H, et al. Research on Fatigue Driving Recognition Based on Brain Function Network[J]. Acta Metrologica Sinica, 2021, 42(11): 1528-1533.