Research on Measurement Technology of Power Frequency Short-circuit Current of Transformer
MEI Guo-jian1,5,LI Chuan-sheng2,WANG Jia-fu2,ZHAO Ye-ming3,DONG Ping4,SHAO Hai-ming2,YAO Yan1
1. China Jiliang University, Hangzhou, Zhejiang 310018, China
2. National Institute of Metrology, Beijing 100029, China
3. Beijing University of Science and Technology Information, Beijing 100192, China
4. Shanxi Institute of Metrology, Taiyuan, Shanxi 030021, China
5. Zhejiang Province Institution of Metrology, Hangzhou, Zhejiang 310018, China
Abstract:Aiming at the requirements of transformer power frequency short-circuit current measurement, the external integral Rogowski coil technology and fiber-optic current sensing technology are studied. The low-frequency mathematical models of the two sensors are established which based on MATLAB/Simulink to calculate the response characteristics of the sensor to the power-frequency short-circuit current. The results show that the measurement accuracy of the Rogowski coil for the power-frequency short-circuit current is affected by its lower cut-off frequency. If the cut-off frequency is lower, the measurement accuracy will be higher. The optical fiber current sensor can theoretically accurately reproduce the power frequency short-circuit current. Multiple current sensors are used for the field comparison test of the transformers power frequency short-circuit current. The results show that the current waveforms measured by the AC/DC current comparator, the fiber-optic current sensor, and the Rogowski coil with a lower cut-off frequency of 0.02Hz agree well, the measurement result of the lower cut-off frequency in Rogowski coil at 0.2Hz shows a significant deviation and could not be reset to zero, which is consistent with the simulation analysis conclusion. It is recommended that the lower cut-off frequency should be lower than 0.1Hz for the external integral Rogowski coil in order to ensure high-precision measurement; fiber-optic current sensor has excellent DC and low-frequency response characteristics, it is an ideal scheme for high-precision measurement of power frequency short-circuit current.
梅国健,李传生,王家福,赵叶铭,董平,邵海明,姚燕. 变压器工频短路电流测量技术研究[J]. 计量学报, 2021, 42(10): 1343-1348.
MEI Guo-jian,LI Chuan-sheng,WANG Jia-fu,ZHAO Ye-ming,DONG Ping,SHAO Hai-ming,YAO Yan. Research on Measurement Technology of Power Frequency Short-circuit Current of Transformer. Acta Metrologica Sinica, 2021, 42(10): 1343-1348.
[1]吴涛. 电力变压器绕组短路动态稳定性研究[D]. 北京: 华北电力大学, 2018.
[2]王安, 周会高, 牛安, 等. 中国首次大容量试验短路电流测量国际比对[J]. 中国电力, 2007, 40(6): 41-44.
Wang A, Zhou H G, Niu A, et al. International comparison of short-circuit current measurements for the first large capacity test in China[J]. China Electric Power, 2007, 40(6): 41-44.
[3]毛晓燕, 欧强, 王静, 等. 变压器短路热效应与动稳定的综合分析[J]. 变压器, 2019, (7): 29-32.
Mao X Y, Ou Q, Wang J, et al. Comprehensive Analysis of Thermal Effect and Dynamic Stability of Transformer Short Circuit[J]. Transformer, 2019, (7): 29-32.
[4]王洪权, 任晓明. 罗氏线圈在变压器短路电流试验时的测量误差[J]. 电子技术与软件工程, 2018, (15): 237-238.
Wang H Q, Ren X M. Measurement error of Roche Coil in transformer short-circuit current test[J]. Electronic Technology and software engineering, 2018,(15): 237-238.
[5]张冈, 王程远, 陈幼平. PCB空心线圈电流传感器的暂态特性[J]. 电工技术学报, 2010, 25(11): 85-89.
Zhang G, Wang C Y, Chen Y P. Transient characteristics of PCB hollow coil current Sensor[J]. Journal of Electrical Technology, 2010, 25(11): 85-89.
[6]张弛, 康小宁, 郑永康, 等. 罗氏线圈电流互感器的暂态传变特性[J]. 高电压技术, 2018, 44(12): 335-342.
Zhang C, Kang X N, Zheng Y K, et al. Transient transmission characteristics of Rogowski coil current transformer[J]. High voltage technology, 2018, 44 (12): 335-342.
[7]何瑞文, 蔡泽祥, 王奕, 等. 空心线圈电流互感器传变特性及其对继电保护的适应性分析[J]. 电网技术, 2013,(5): 292-297.
He R W, Cai Z X, Wang Y, et al. Analysis of transmission characteristics of air core coil current transformer and its adaptability to relay protection[J]. Grid technology, 2013, (5): 292-297.
[8]Bohnert K, Gabus P, Jürgen N, et al. Fiber-Optic Current Sensor for Electrowinning of Metals[J]. Journal of Lightwave Technology, 2007, 25(11): 3602-3609.
[9]Blake J, Tantaswadi P, Carvalho R T D. In-line Sagnac interferometer current sensor[J]. IEEE Transactions on Power Delivery, 1996, 11(1): 116-121.
[10]王夏霄, 张春熹, 张朝阳, 等. 一种新型全数字闭环光纤电流互感器方案[J]. 电力系统自动化, 2006,(16): 77-80.
Wang X X, Zhang C X, Zhang C Y, et al. A new all digital closed-loop optical fiber current transformer Scheme[J]. Power system automation, 2006, (16): 77-80.
[11]李传生, 赵伟, 王家福, 等. 直流光纤电流互感器谐波测量误差机理及改善[J]. 中国激光, 2017,44(9): 269-275.
Li C S, Zhao W, Wang J F, et al. Harmonic measurement error mechanism and improvement of DC optical fiber current transformer[J]. China laser, 2017, 44(9): 269-275.
[12]李奇, 李传生,梁波, 等. 光纤直流大电流传感器非线性机理及校准技术[J]. 计量学报, 2021, 42(4): 409-414.
Li Q, Li C S, Liang B,et al. Nonlinear Mechanism and Calibration Technology of Fiber-Optic DC High Current Sensor[J]. Acta Metrologica Sinica, 2021, 42(4): 409-414.
[13]梅国健,王家福,李传生, 等. 基于数字图像识别和光纤传感器的直流大电流在线校准装置[J]. 计量学报, 2021, 42(5): 623-628.
Mei G J, Wang J F, Li C S,et al. DC High Current On-Line Calibration Devicebased on Digital Image Recognition and Optical Fiber Sensor[J]. Acta Metrologica Sinica, 2021, 42(5): 623-628.