1. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. Division of Optics and Lasers, National Institute of Metrology, Beijing 100029, China
3. Hangzhou Dahua Apparatus Manufacture Co., Ltd, Hangzhou, Zhejiang 311400, China
Abstract:A method for irradiance responsivity calibration and traceability of a terahertz array detector is proposed. Firstly, each pixel of the array detector is shift to scan the center of the terahertz irradiation field one by one, and then effective pixels, overheated pixels and dead pixels is discerned. The response of the effective pixels is normalize to obtain the relative irradiance response of the array detector. Secondly, the center pixel is used to measure the terahertz irradiation field. Make sure the scanning area larger than the terahertz spot size, so that the total power of the terahertz radiation is fully measured. The terahertz power response values of the central pixel and other effective pixels are obtained.Finally, a Golay Cell detector is calibrated with a standard terahertz power meter as reference, and then the traceable measurement of terahertz power is extended to microwatt-level. The integrated response value measured by the array detector is calibrated with the Golay Cell. And thus the absolute irradiance response of the array detector is obtained. The relative expanded uncertainty of the measured irradiance responsivity is 20% (k=2), and the measurement result can be traceable to the national terahertz radiant power standard.
[1]Yang H R, Li H G. Research progress on terahertz communication technology[J]. Journal of Applied Optics, 2018, 39(1): 12-13.
[2]安国雨. 太赫兹技术应用与发展研究[J]. 环境技术, 2018, 36(2): 25-28.
An G Y. Study on application and development of terahertz technology[J]. Environmental Technology, 2018, 36(2): 25-28.
[3]Cao C, Zhang Z H, Zhao X Y, et al. Review of terahertz time domain and frequency domain spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(9): 2688-2699.
[4]Wang L, Zhang C J, Liu H H, et al. The study of the technique of power measure of the THz wave[J]. Journal of Microwaves, 2014, 30(S1): 566-567.
[5]潘钊, 温银堂, 郑晓康, 等. 基于太赫兹图像的航天复合材料粘接缺陷检测方法研究[J]. 计量学报, 2018, 39(4): 471-475.
Pan Z, Wen Y T, Zheng X K, et al. Study on nondestructive testing for bonding defects in aerospace composite based on terahertz image[J]. Acta Metrologica Sinica, 2018, 39(4): 471-475.
[6]闵碧波, 曾嫦娥, 印欣, 等. 太赫兹技术在军事和航天领域的应用[J]. 太赫兹科学与电子信息学报, 2014, 12(3): 351-354.
Min B B, Zeng C E, Yin X, et al. Application of terahertz techniques in military and space[J]. Journal of Terahertz Science and Electronic Information Technology, 2014, 12(3): 351-354.
[7]Akyildiz I F, Jornet J M, Han C. Next frontier for wireless communications[J]. Physical Communication, 2014, 12(4): 16-32.
[8]钟青, 袁文泽, 史艳平, 等. 毫米波功率计量标准器芯片的研制[J]. 计量学报, 2019, 40(2): 329-332.
Zhong Q, Yuan W Z, Shi Y P, et al. Study on millimeter wave power standard devices[J]. Acta Metrologica Sinica, 2019, 40(2): 329-332.
[9]Werner L, Hübers. H W, Meindl P, et al. Towards traceable radiometry in the terahertz region[J]. Metrologia, 2008, 46(4): 160-164.
[10]Lehman J H, Lee B, Grossman E N. Far infrared thermal detectors for laser radiometry using a carbon nanotube array[J]. Applied optics, 2011, 50(21): 4099-4104.
[11]Deng Y Q, Sun Q, YU J, et al. Broadband high-absorbance coating for terahertz radiometry[J]. Optics Express, 2013, 21(5): 5740-5742.
[12]Iida H, Kinoshita M, Amemiya K, et al. Calorimetric measurement of absolute terahertz power at the sub-microwatt level[J]. Optics Letters, 2014, 39(6): 1609-1612.
[13]程丽鹏, 张猛, 王高, 等. 长波红外探测器的辐射定标[J]. 科学技术与工程, 2016, 16(28): 195-198.
Cheng L P, Zhang M, Wang G, et al. Radiance Calibration for Long Wave Infrared Detector[J]. Science Technology and Engineering, 2016, 16(28): 195-198.
[14]郑兴. 室温太赫兹焦平面探测器及测试验证成像的研究[D]. 成都: 电子科技大学, 2016.
[15]Deng Y Q, Li J, Sun Q. Traceable Measurements of CW and Pulse Terahertz Power With Terahertz Radiometer[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 23(4): 1-1.
[16]蒋强, 王玥, 文哲, 等. 太赫兹时域光谱技术的变压器油低水含量检测[J]. 光谱学与光谱分析, 2018, 38(4): 1049-1052.
Jiang Q, Wang Y, Wen Z, et al. Moisture Content Determination of Transformer Oil by Using Terahertz Time-Domain Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(4): 1049-1052.