Error Analysis Methodology for Indoor Baseline Field Based on Optical Path Folding
CAI Qing-mei1,ZHAO Mei-rong1,LIU Hong-guang2,ZHENG Ye-long1,ZHANG Han-li1,SONG Le1
1. Precision Instruments and Optoelectronic Engineering College, Tianjin University, Tianjin 300072, China
2. Tianjin Institute of Metrological Supervision and Testing, Tianjin 300192, China
Abstract:In order to effectively carry out indoor verification of long-distance photoelectric distance measuring instruments, an indoor virtual baseline field was built based on the principle of folding optical path with a group of plane mirrors. The measurement error of the baseline system was analyzed. Considering the adjustment accuracy of various errors, the analysis results were applied to the actual optical path adjustment process. Through the analysis, the errors which have more significant effect on the baseline length were obtained, and they were controlled and adjusted to improve the adjustment accuracy of the parallelism of the measuring optical path. Finally, a dual frequency laser interferometer was used to provide reference length value to carry out the verification experiment. The experimental results show that double optical path multiplication can be achieved by optical path folding method, and the baseline system has high accuracy and can be used for continuous measurement, effectively solving the technical problems of low detection efficiency and poor repeatability in the process of indoor baseline establishment.
[1]Ren Y, Lin J, Zhu J, et al. Coordinate transformation uncertainty analysis in large-scale metrology[J]. IEEE Transactions on Instrumentation & Measurement, 2015, 64(9): 2380-2388.
[2]Schmitt R H, Peterek M, Morse E, et al. Advances in large-scale metrology-review and future trends[J]. CIRP Annals-Manufacturing Technology, 2016, 65(2): 643-665.
[3]叶声华, 邾继贵, 张滋黎, 等. 大空间坐标尺寸测量研究的现状与发展[J]. 计量学报, 2008, 29(z1): 1-6.
Ye S H, Zhu J G, Zhang Z L, et al. Research on current status and development of large space coordinate size measurement[J]. Acta Metrologica Sinica, 2008, 29(z1): 1-6.
[4]郑继辉, 缪东晶, 李建双, 等. 采用标准长度的激光多边法坐标测量系统自标定算法[J]. 计量学报, 2019, 40(1): 64-70.
Zheng J H, Miao D J, Li J S, et al. Self-calibration algorithm for laser multilateral coordinate measurement system using standard length method[J]. Acta Metrologica Sinica, 2019, 40(1): 64-70.
[5]Shi J L, Sun Z X, Bai S Q. Large-scale three-dimensional measurement via combining 3D scanner and laser rangefinder[J]. Applied Optics, 2015, 54(10): 2814-2823.
[6]秦海濛, 林虎, 薛梓, 等. 激光跟踪干涉仪在坐标测量机检测中的应用[J]. 计量学报, 2019, 40(z1): 1-7.
Qin H M, Lin H, Xue Z, et al. Application of laser tracking interferometer in tests of coordinate measuring machine[J]. Acta Metrologica Sinica, 2019, 40(z1): 1-7.
[7]李萍, 李建双, 赫明钊, 等. 基于空气环境参数自动测量系统的全站仪测距精度校准技术[J]. 计量学报, 2019, 40(z1): 12-16.
Li P, Li J S, He M Z, et al. Calibration technology of total station ranging accuracy based on automatic measurement system of air environment parameters[J]. Acta Metrologica Sinica, 2019, 40(z1): 12-16.
[8]李婷, 李建双, 缪东晶, 等. 温度条件对大尺寸测量装置精度影响的研究[J]. 计量学报, 2019, 40(6): 975-979.
Li T, Li J S, Miao D J, et al. Study on the influence of temperature conditions on the accuracy of large-scale measuring device[J]. Acta Metrologica Sinica, 2019, 40(6): 975-979.
[9]王剑, 杨胜万, 孟小芳. 建立室内基线可行性的分析研究[J]. 现代测绘, 2016, 39(3): 34-36.
Wang J, Yang S W, Meng X F. Analysis and research on the feasibility of establishing indoor baseline[J]. Modern Surveying and Mapping, 2016, 39(3): 34-36.
[10]刘万里, 欧阳健飞, 曲兴华. 激光光束入射角度变化对角锥棱镜测量精度的影响[J]. 光学精密工程, 2009, 17(2): 286-291.
Liu W L, Ouyang J F, Qu X H. The effect of beam incident angles on cube corner retro-reflector measuring accuracy[J]. Optics and Precision Engineering, 2009, 17(2): 286-291.
[11]杨中东, 雷玉堂. 利用光纤检定激光测距仪的研究[J]. 光电工程, 2007, 34(1): 139-144.
Yang Z D, Lei Y T. Research on calibrating laser rangefinder by using optical fiber[J]. Opto-Electronic Engineering, 2007, 34(1): 139-144.
[12]史洁琴, 何珂, 徐永. 光纤基线标定激光测距仪方法研究[J]. 南京航空航天大学学报, 2012, 44(6): 830-834.
Shi J Q, He K, Xu Y. Research on the method for calibrating laser rangefinder with optical fiber baseline[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 44(6): 830-834.
[13]黄稣. 建立室内虚拟长度基线场的可行性探讨[J]. 计测技术, 2006, 26(4): 22-25.
Huang S. Discussion on the feasibility of establishing indoor virtual length baseline field[J]. Metrology & Measurement Technology, 2006, 26(4): 22-25.
[14]乔卫东, 赵敏, 刘康, 等. 手持式激光测距仪检定方法及系统研究[J]. 计量学报, 2016, 37(1): 15-18.
Qiao W D, Zhao M, Liu K, et al. Research on calibration method and system of hand-held laser rangefinder[J]. Acta Metrologica Sinica, 2016,37(1): 15-18.
[15]刘红光, 李青, 李凌梅, 等. 基于误差相消原理的光程倍增测量方法[J]. 计量学报, 2019, 40(5): 776-779.
Liu H G, Li Q, Li L M, et al. Optical path multiplication measurement method based on error cancellation principle[J]. Acta Metrologica Sinica, 2019, 40(5): 776-779.
[16]魏健. 基于ZEMAX手持激光测距望远镜光学系统设计[D]. 北京: 中国计量学院, 2016.
[17]范应娟. 基于ZEMAX的折反射式望远物镜的设计[J]. 陕西科技大学学报(自然科学版), 2013, 31(2): 146-149.
Fan Y J. Design of catadioptric telescope objective based on ZEMAX[J]. Journal of Shaanxi University of Science & Technology (Natural Science Edition), 2013, 31(2): 146-149.
[18]李一鸣. 手持式激光测距仪自动检定关键技术研究[D]. 天津: 天津大学, 2017.
[19]李倩. 手持式激光测距仪检定方法及系统研究[D]. 西安: 西安理工大学, 2013.
[20]刘红光, 路瑞军, 李青, 等. 一种应用于激光干涉仪的等比例偏移定量准直装置[J]. 计量学报, 2018, 39(6): 801-803.
Liu H G, Lu R J, Li Q, et al. Equal proportion offset quantitative collimator in application of laser interferometer[J]. Acta Metrologica Sinica, 2018, 39(6): 801-803.