Abstract:There are many methods to classify meat by using computer vision technology. For the problems of poor segmentation effect and poor noise adaptability of traditional maximum variance (OTSU) method and the problems of large size, unportability and high cost of detection instruments in most nondestructive testing methods such as nuclear magnetic resonance (NMR) and hyperspectral imaging, HSV color space combined with clustering method is proposed to cluster and segment image pixels. When the pork image is segmented from the natural lighting environment, the proposed method is improved by an average of 1.46% compared with the traditional clustering method. When the image with 0.1 and 0.2 salt and pepper noise is segmented, the proposed method has better anti-noise ability than the traditional method. The average error rate of the traditional segmentation method has increased by 16.15% and 38.28% respectively. The average error rate of the proposed method has only increased by 1.57% and 1.49%. The accuracy of image segmentation and noise robustness improve the detection accuracy of the target region, reduce the information loss in the image preprocessing stage, and improve the quality of the meat classification method.
[1]董庆利, 胡孟晗. 应用计算机视觉评定肉类品质的研究进展[J]. 现代食品科技, 2011, 27(2): 209-212.
Dong Q L, Hu M H. Research progress of computer vision in meat quality evaluation[J]. Modern food science and technology, 2011, 27(2): 209-212.
[2]邢雪亮, 甘文波, 蒋朝根. 基于机器视觉的航空铆钉尺寸检测技术[J]. 计量学报, 2020, 41(5): 518-523.
Xing X L, Gan W B, Jiang C G. Technology of Size Detection of Air Rivets Based on Machine Vision[J]. Acta Metrologica Sinica, 2020, 41(5): 518-523.
[3]刘家丰, 李东波. 基于Lab色彩空间的自适应K-means图像分割方法[J]. 机械设计与制造工程, 2018, 47(12): 23-27.
Liu J F, Li D B. Adaptive k-means image segmentation method based on Lab color space[J]. Mechanical design and manufacturing engineering, 2018, 47(12): 23-27.
[4]Said A B, Foufou S, Abidi M. A FCM and SURF Based Algorithm for Segmentation of Multispectral Face Images[C]// IEEE International Conference on Signal-Image Technology & Internet-Based Systems. Kyoto, Japan, 2013: 65-70.
[5]夏志巍. 基于模糊聚类的图像分割方法[D]. 南京:南京信息工程大学, 2018.
[6]张晴晴, 张云龙, 齐国红, 等. 基于直觉模糊C均值聚类算法的作物病害图像分割[J]. 安徽农业科学, 2019, 47(5): 233-236.
Zhang Q Q, Zhang Y L, Qi G H, et al. Crop disease image segmentation based on intuitionistic fuzzy c-means clustering algorithm[J]. Anhui agricultural science, 2019, 47(5): 233-236.
[7]王新宁, 林相波, 袁珍. 基于 FCM聚类算法的MRI脑组织图像分割方法比较研究[J]. 北京生物医学工程, 2015, 34(3): 221-228.
Wang X N, Lin X B, Yuan Z. MRI brain image segmentation based on FCM clustering algorithm method comparative study[J]. Journal of biomedical engineering in Beijing, 2015, 34(3): 221-228.
[8]Chen S C, Zhang D Q. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J].
IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A Publication of the IEEE Systems Man & Cybernetics Society, 2004, 34(4): 1907-1916.
[9]Kumar D, Verma H, Mehra A, et al. A modified intuitionistic fuzzy c-means clustering approach to segment human brain MRI image[J]. Multimedia Tools and Applications, 2019, 78: 12663–12687.
[10]Zadeh L A. Fuzzy Sets[J]. Information and Control, 1965, 8(3): 338-353.
[11]Kaufmann A.
Introduction to the Theory of Fuzzy Subsets: Fundamental Theoretical Elements[M]. New York: Academic Press, 1975.
[12]Yager R R. On the measures of fuzziness and negation part II lattices[J]. Information and Control, 1980, 44: 236-260.
[13]Szmidt E, Kacpryzk J. Entropy of an intuitionistic fuzzy set[J]. Fuzzy Sets and Systems, 2001, 118: 467-477.
[14]伍学千. 基于计算机视觉技术的猪肉品质检测与分级研究[D]. 杭州:浙江大学, 2010.
[15]唐浩, 王克俭, 李晓烨, 等. 基于色差聚类的原木图像端面检测与统计[J]. 计量学报, 2020, 41(6): 682-688.
Tang H, Wang K J, Li X Y, et al. Logs End Detection and Statistics by Color Difference Clustering[J]. Acta Metrologica Sinica, 2020, 41(6): 682-688.
[16]汤正华. 基于改进蝙蝠优化自确定的模糊C-均值聚类算法[J]. 计量学报, 2020, 41(4): 505-512.
Tang Z H. Self-Defined Fuzzy Clustering C-Means Algorithm Based on Improved Bat Optimization[J]. Acta Metrologica Sinica, 2020, 41(4): 505-512.