Abstract:The GUM method and the adaptive Monte Carlo method were used to evaluate the measurement uncertainty of the level 0.005 pressure type water depth measuring instrument verification device, and the GUM method was verified by the adaptive Monte Carlo method. The results showed that the pressure measurement model was more complicated, both methods were suitable for evaluating the measurement uncertainty, and when the effective number of standard uncertainty was taken one bit, the GUM method was verified at each detection point. It was very important to choose the reasonable value of the numerical tolerance. In the actual measurement, it should be selected according to the accuracy of the measuring instrument and the requirements of the measurement results.
[1]李迪. 0. 005级活塞压力计标准的不确定度评定[J]. 仪表技术, 2016,(10): 19-22.
Li D. Evaluating the Uncertainty of 0. 005 Level Piston Gauge Standard[J]. Instrumentation Technology, 2016,(10): 19-22.
[2]黄智渊, 钱斌, 梁圣伟, 等. 一等气体活塞压力计测量标准不确定度评定[J]. 仪器仪表用户, 2009, 16(5): 72-73.
Huang Z Y, Qian B, Liang S W, et al. Evaluation of Uncertainty in Measurement of First-Class Gas Piston Pressure Gauge[J]. Instrumentation User, 2009, 16(5): 72-73.
[3]邢威. 工作基准气体活塞式压力计测量不确定度评定[J]. 计量与测试技术, 2013, 40(5): 62-65.
Xing W. Evaluation of Measurement Uncertainty of Working Reference Gas Piston Pressure Gauge[J]. Metrology and testing technology, 2013, 40(5): 62-65.
[4]李杨眉. 海洋压力监测仪器实验室校准结果不确定度的分析[J]. 海洋技术, 2005, 24(4): 135-137.
Li Y M. Analysis of Uncertainty in Laboratory Calibration Results of Marine Pressure Monitoring Instruments[J]. Ocean Technology, 2005, 24(4): 135-137.
[5]索利利, 高占科, 朱海庆. 海洋压力测量仪器的校准方法及结果评定[J]. 海洋技术, 2009, 28(3): 130-133.
Suo L L, Gao Z K, Zhu H Q. Evaluation on Calibration of Marine Pressure Sensor[J]. Ocean Technology, 2009, 28(3): 130-133.
[6]许新民, 张秀松. 一等标准活塞式压力计有效面积的测量不确定度评定[J]. 航空计测技术, 2003, 23(2): 29-41.
Xu X M, Zhang X S. Evaluation of Uncertainty of Measurement of Effective Area of Grade 1 Standard Piston Pressure Gauge[J]. Aviation measurement technology, 2003, 23(2): 29-41.
[7]甘蓉. 二等浮球式压力计测量不确定度分析[J]. 中国测试技术, 2003,(6): 25-26.
Gan R. Analysis of Measurement Uncertainty of Second-class Floating Ball Pressure Gauge[J]. China Measurement Technology, 2003,(6): 25-26.
[8]李文博, 杨波, 颜平江. 蒙特卡洛法在气压传感器检定结果不确定度评定中的应用[J]. 国外电子测量技术, 2016, 35(8): 90-94.
Li W B, Yang B, Yan P J. Application of Monte Carlo method in uncertainty evaluation of air pressure sensors verification results[J]. Foreign Electronic Measurement Technology, 2016, 35(8): 90-94.
[9]魏明明. 自适应MCM的波动性指标收敛趋势分析[J]. 计量学报, 2019, 40(3): 530-537.
Wei M M. Analysis of Convergence Trend of Adaptive MCM Volatility Index. [J]. Anta Metrologica Sinica, 2019, 40(3): 530-537.
[10]方兴华, 宋明顺, 顾龙芳, 等. 基于自适应蒙特卡洛方法的测量不确定度评定[J]. 计量学报, 2016, 37(4): 452-456.
Fang X H, Song M S, Gu L F, et al. Application of Adaptive Monte-Carlo Method on Measurement Uncertainty Evaluation[J]. Acta Metrologica Sinica, 2016, 37(4): 452-456.
[11]王伟, 宋明顺, 陈意华, 等. 蒙特卡洛方法在复杂模型测量不确定度评定中的应用[J]. 仪器仪表学报, 2008, 29(7): 1446-1449.
Wang W, Song M S, Chen Y H, et al. Application of Adaptive Monte-Carlo Method in Measurement Uncertainty Evaluation of complicated model[J]. Chinese Journal of Scientific Instrument, 2008, 29(7): 1446-1449.
[12]杨建. 蒙特卡罗法评定测量不确定度中相关随机变量的MATLAB实现[J]. 计测技术, 2012, 32(4): 51-54.
Yang J. The MATLAB Realization of Correlated Random Variable in Evaluation of Measurement Uncertainty Based on Monte Carlo Method[J]. Metrology and testing technology, 2012, 32(4): 51-54.
[13]JJF 1059.2-2012用蒙特卡洛法评定测量不确定度[S]. 2012.
[14]JJF 1059.1-2012测量不确定度评定与表示[S]. 2012.