2025年06月04日 星期三 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2021, Vol. 42 Issue (8): 1026-1033    DOI: 10.3969/j.issn.1000-1158.2021.08.08
  力学计量 本期目录 | 过刊浏览 | 高级检索 |
重载并联六维力传感器及静态标定
蔡大军1,3,姚建涛1,2,李颖康1,易旺民4,许允斗1,2,赵永生1,2
1.燕山大学 河北省并联机器人与机电系统实验室,河北 秦皇岛 066004
2.燕山大学 先进锻压成形技术与科学教育部重点实验室,河北 秦皇岛 066004
3.燕山大学 工程训练中心,河北 秦皇岛 066004 4.北京卫星环境工程研究所, 北京 100094
Parallel Six-Axis Force Sensor with Heavy-load Capacity and Static Calibration
CAI Da-jun1,3,YAO Jian-tao1,2,LI Ying-kang1,YI Wang-min4,XU Yun-dou1,2,ZHAO Yong-sheng1,2
1. Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao, Hebei 066004, China
2. Key Laboratory of Advanced Forging & Stamping Technology and Science, Ministry of Education of China, Yanshan University, Qinhuangdao,Hebei 066004, China
3. Engineering Training Center of Yanshan University, Qinhuangdao, Hebei 066004, China
4.Beijing Institute of Spacecraft Environment Engineering, Beijing 100094
全文: PDF (1360 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对传感器重载小尺寸需求,提出一种具有混合分支的重载并联六维力传感器,分析了其结构特点和测量原理。搭建了重载并联六维力传感器标定系统,为改善维间耦合及制造误差等对测量精度产生的影响,从标定算法及模型优化方面对其进行了研究。分别利用最小二乘法和BP神经网络算法对加载实验数据进行了处理,分析结果表明BP神经网络算法要明显优于最小二乘法,并通过数据随机分组测试验证了结果的正确性。基于BP神经网络,提出了一种基于人工鱼群算法的BP神经网络算法,并采用优化后的BP神经网络标定算法对实验数据进行了计算分析,结果表明优化后的BP神经网络计算结果较好且稳定,不易陷入局部极值。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡大军
姚建涛
李颖康
易旺民
许允斗
赵永生
关键词 计量学六维力传感器轮辐重载标定实验混合分支    
Abstract:Aim at the requirements of the sensor on heavy load and small size, a hybrid branch parallel six-axis force with havey-load capacity is proposed, the structural characteristics and measuring mechanism are also explained. The calibration system of six-axis force sensor is built, and in order to improve the effect of dimensional coupling and manufacturing error on the measurement accuracy of the sensor, the model optimization of calibration algorithm is studied. The least square method and BP neural network calibration algorithm are respectively used to calibration analyze the loading experimental data, the results show that the BP neural network algorithm is better than the least square method, and the correctness of analysis results is proved by the grouping test of random data. Based on the BP neural network, a BP neural network algorithm based on artificial fish swarm algorithm is proposed, and the calibration data is calculated and analyzed by using the optimized BP neural network algorithm, the results show that the BP neural network algorithm based on artificial fish swarm algorithm is more stable and difficult to fall into local extremum.
Key wordsmetrology    six-axis force sensor    spoke    havey-load    calibration experiment    hybrid branch
收稿日期: 2019-12-10      发布日期: 2021-08-20
PACS:  TB931  
基金资助:国家自然科学基金(51675459,U2037202);河北省高校百名优秀创新人才支持计划(SLRC2019039);河北省省级科技计划国际科技合作基地建设专项(19391825D)
通讯作者: 姚建涛(1980-),男,河北保定人,燕山大学教授、博士生导师,主要从事仿生软体机器人前沿技术及应用、机器人力传感器与触觉感知技术、并联机器人机构理论及装备方面的研究。Email: jtyao@ysu.edu.cn     E-mail: jtyao@ysu.edu.cn
作者简介: 蔡大军(1989-),男,河北乐亭人, 燕山大学助理实验师,主要从事机器人力传感器及装配技术、并联机器人及应用研究。Email: caidajun@ysu.edu.cn
引用本文:   
蔡大军,姚建涛,李颖康,易旺民,许允斗,赵永生. 重载并联六维力传感器及静态标定[J]. 计量学报, 2021, 42(8): 1026-1033.
CAI Da-jun,YAO Jian-tao,LI Ying-kang,YI Wang-min,XU Yun-dou,ZHAO Yong-sheng. Parallel Six-Axis Force Sensor with Heavy-load Capacity and Static Calibration. Acta Metrologica Sinica, 2021, 42(8): 1026-1033.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2021.08.08     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2021/V42/I8/1026
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn