Comparison of Scale Division Methods between Single-fixed-point Extrapolation and Multi-fixed-point Interpolation for 0.9μm Pyrometers
LIU Xiao-ying1,2,LIU Ju-fen2,WANG Jing-hui1,LU Xiao-feng1
1. Heat Division, National Institute of Metrology, Beijing 100029, China
2. School of Information and Communication Engineering, North University of China, Taiyuan, Shanxi 030051, China
Abstract:Scale division methods for single fixed-point extrapolation and multiple fixed-point interpolation are two commonly used calibration methods for standard photoelectric pyrometers. A comparative study of two methods was carried out for a newly developed 0.9μm photoelectric pyrometer. In the temperature measurement range of 500~1800℃, the high-temperature blackbody furnace was used as a comparison source to verify the value at the hundreds of temperature points against a standard photoelectric pyrometer. The results show that the consistency of the temperature values of the two methods is better than 0.2℃, and the maximum error away the standard value is not more than 0.6℃. The calibration uncertainty of the two methods is evaluated as 0.2~1.3℃ and 0.2~0.8℃, respectively, k=2. The single fixed point extrapolation method must measure the pyrometer spectral responsivity and non-linearity. The multiple fixed-point interpolation method is simple and easy to operate, and the uncertainty can be kept at a high level. The multi-fixed-point interpolation method can be universally used for most temperature calibration laboratories, whether it is for the manufacture or the periodic calibration.
[1]张艳莉. RT9031光电高温计的改进及其性能研究 [D]. 成都: 成都理工大学, 2014.
[2]Lu X, Wang T, Bai C, et al. Calibration of pyrometers by using extrapolation and interpolation methods at NIM[C]//TEMPMEKO 2016: Selected Papers of the 13th International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science. 2018.
[3]Sakuma F, Hattori S. Establishing a practical temperat-ure standard by using a narrow-band radiation thermom-eter with a silicon detector[C]//Temperature: Its Measurement and Control in Science and Industry. New York,USA, 1982.
[4]Sasajima N, Yamada Y, Sakuma F. Metal-carbon and metal carbide-carbon eutectic fixed points as hightemp-erature standards[C]//2002 SICE Annual Conference. Osaka, Japan, 2002.
[5]孟苏, 蔡静, 董磊. Co-C共晶点研制及评价 [J]. 计量学报, 2019, 40 (1): 8-12.
Meng S, Cai J, Dong L. The development and evaluation of the Co-C eutectic point [J]. Acta Metrologica Sinica, 2019, 40 (1): 8-12.
[6]原遵东. 辐射温度计的等效波长及其应用 [J]. 仪器仪表学报, 2009, 30 (2): 374-379.
Yuan Z D. Equivalent wavelength of the radiation thermometer and its applications [J]. Chinese Journal of Scientific Instrument, 2009, 30 (2): 374-379.
[7]原遵东, 赵琪, 段宇宁, 等. 新型精密光电高温计 [J]. 计量学报, 2003, 24 (4): 257-261.
Yuan Z D, Zhao Q, Duan Y N, et al. A new transfer standard photoelectric pyrometer [J]. Acta Metrologica Sinica, 2003, 24 (4): 257-261.
[8]段宇宁, 赵琪, 原遵东, 等. 辐射源尺寸效应研究 [J]. 计量学报, 1996, 17 (3): 161-166.
Duan Y N, Zhao Q, Yuan Z D, et al. Study on the size-of-source effect in radiation thermometry [J]. Acta Metrologica Sinica, 1996, 17 (3): 161-166.
[9]Yuan Z, Wang T, Lu X, et al. T90 measurement of Co-C, Pt-C, and Re-C high-temperature fixed points at the NIM [J]. Int J Thermophy, 2011, 32 (7): 1744-1752.
[10]郝小鹏, 赵婉君, 原遵东, 等. 900nm照度辐射温度计的性能和不确定度分析 [J]. 仪器仪表学报, 2010, 31 (8): 223-226.
Hao X P, Zhao W J, Yuan Z D, et al. Study the performance and analyze the uncertainty of 900nm irradiation thermometer [J]. Chinese Journal of Scientific Instrument, 2010, 31 (8): 223-226.
[11]原遵东. 确定光电高温计的有效波长 [C]//中国仪器仪表与测控技术交流大会.成都, 2007,262-265.
[12]卢小丰, 原遵东, 柏成玉, 等. 基准光电高温计的光谱响应度测量 [J]. 计量学报, 2007, 28 (3A): 65-68.
Lu X F, Yuan Z D, Bai C Y, et al. The spectral responsivity measurement of the primary standard pyro-meter [J]. Acta Metrologica Sinica, 2007, 28 (3A): 65-68.
[13]王鹏程, 原遵东, 于帆, 等. 光栅单色仪的波长标定实验研究 [J]. 计量学报, 2007, 28 (z1): 169-173.
Wang P C, Yuan Z D, Yu F, et al. Experiment and research of calibrating the wavelength of the grating monochrometer [J]. Acta Metrologica Sinica, 2007, 28 (z1): 169-173.
[14]代彩红, 王彦飞, 吴志峰, 等. 光谱辐射亮度国际比对与结果分析 [J]. 计量学报, 2020, 41 (2): 147-152.
Dai C H, Wang Y F, Wu Z F, et al. International comparison and result analysis of spectral radiance [J]. Acta Metrologica Sinica, 2020, 41 (2): 147-152.
[15]卢小丰, 原遵东, 董伟, 等. 应用高温固定点校准精密光电高温计 [J]. 计量学报, 2017, 38 (5): 584-588.
Lu X F, Yuan Z D, Dong W, et al. Calibrating pyro-meters with high temperature fixed points [J]. Acta Metrologica Sinica, 2017, 38 (5): 584-588.
[16]盛山菊, 卢小丰, 唐小洁, 等. 红外辐射温度计专用数字表的研制及评价 [J]. 计量学报, 2019, 40 (1): 20-24.
Sheng S J, Lu X F, Tang X J, et al. Development and evaluation of digital meter for an infrared radiation thermometer [J]. Acta Metrologica Sinica, 2019, 40 (1): 20-24.