Abstract:Aiming at the problem that the model of steam turbine heat consumption rate is difficult to be predicted accurately, a method based on the improved lion group algorithm and fast learning network integrated modeling was proposed. Firstly, the traditional lion swarm optimization algorithm is prone to premature convergence and the slow speed of the algorithm in the late iteration leads to the algorithm falling into the local optimal defect. The algorithm was improved by introducing the tabu search, the nonlinear disturbance factor and the golden sine strategy. Secondly, the improved lion swarm algorithm was numerically validated, and the results showed that it had the higher convergence accuracy and the faster convergence speed. Finally, a prediction model of steam turbine heat consumption rate was established based on the operation data of steam turbine in a thermal power plant, and a fast learning network optimized by improved lion swarm optimization algorithm was used to predict the heat consumption rate. The experimental results were compared with other optimization strategies, and the results showed that the fast learning network prediction model based on improved lion swarm algorithm had the higher generalization ability and improved the prediction accuracy of steam turbine heat consumption rate.
[1]王卓峰, 敦剑, 卢红波, 等. 工业汽轮机的经济出力分界点[J]. 化工学报, 2012, 63(11): 3579-3584.
Wang J F, Dun J, Lu H B, et al. Dividing point of economic output of industrial steam turbine[J]. CIESC Journal, 2012, 63(11): 3579-3584.
[2]左智科, 陈国彬, 刘超, 等. 反馈精英鲸鱼优化算法优化LSSVM的热耗率软测量建模[J]. 计量学报, 2019, 40(2): 259-265.
Zuo Z K, Chen G S, Liu C, et al. Soft Sensor Model of Heat Rate Based on Optimized LSSVM by FEWOA[J]. Acta Metrologica Sinica, 2019, 40(2): 259-265.
[3]王莉莉, 陈国彬, 李一龙, 等. 基于CPSO-LSSVM的汽轮机热耗率软测量模型[J]. 动力工程学报, 2018, 38(9): 706-712.
Wang L L, Chen G S, Li Y L, et al. Soft Sensor Modelling of Steam Turbine Heat Rate Based on CPSO-LSSVM[J]. Journal of Chinese Society of Power Engineering, 2018, 38(9): 706-712.
[4]牛培峰, 王枭飞,刘楠,等. 基于共生生物搜索算法的汽轮机最优初压研究[J]. 计量学报, 2019, 40(3): 447-454.
Niu P F,Wang X F,Liu N, et al. Optimization on Inital Pressure of a Steam Turbine Based on Symbiotic Organisms Search Algorithm. Acta Metrologica Sinica, 2019, 40(3): 447-454.
[5]牛培峰,丁翔,刘楠,等. 基于混合鸡群算法和核极端学习机的锅炉NOx排放的预测[J]. 计量学报, 2019, 40(5): 929-936.
Niu P F,Ding X,Liu N,et al. Prediction of Boiler NOx Emission Based on Mixed Chicken Swarm Algorithm and Kernel Extreme Learning Machine[J]. Acta Metrologica Sinica, 2019, 40(5): 929-936.
[6]王惠杰, 范志愿, 许小刚. 基于FOA-LSSVM的汽轮机热耗率预测模型研究[J]. 热力发电, 2017, 46(5): 36-42.
Wang H J, Fan Z Y, Xu X G. Research on prediction model of heat consumption rate of steam turbine based on FOA-LSSVM[J]. Thermal Power Generation, 2017, 46(5): 36-42.
[7]朱誉, 冯利法, 徐治皋. 基于BP神经网络的热经济性在线计算模型[J]. 热力发电, 2008, 37(12): 17-19.
Zhu Y, Feng L F, Xu Z F. An On-Line Calculation Model of Thermal Economic Efficiency Based BP Neural Network[J]. Thermal Power Generation, 2008, 37(12): 17-19.
[8]刘生建, 杨艳, 周永权. 一种群体智能算法——狮群算法[J]. 模式识别与人工智能, 2018, 31(5): 431-441.
Liu S J, Yang Y, Zhou Y Q. A Swarm Intelligence Algorithm-Lion Swarm Optimization[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(5): 431-441.
[9]Li G Q, Niu P F, Duan X L, et al. Fast learning network: a novel artificial neural network with a fast learning speed[J]. Neural Computing and Applications, 2014, 24(7/8): 1683-1695.
[10]Shi Y, Eberhart R. A modified particle swarm optimization[C]//IEEE World Congress on Computational Intelligence. 1998.
[11]Clover F. Tabu Search—Part I[J]. ORSA J on Computing, 1989, 1(3): 89-98.
[12]Tanyidizi E, Demir G. Golden Sine Algorithm: A Novel Math-Inspired Algorithm[J]. Advances in Electrical and Computer Engineering, 2017, 17(2): 71-78.
[13]张震, 魏鹏, 李玉峰, 等. 改进粒子群联合禁忌搜索的特征选择算法[J]. 通信学报, 2018, 39(12): 60-68.
Zhang Z, Wei P, Li Y F, et al. Feature selection algorithm based on improved particle swarm joint taboo search[J]. Journal on Communications, 2018, 39(12): 60-68.
[14]肖子雅, 刘升. 黄金正弦混合原子优化算法[J]. 微电子学与计算机, 2019, 36(6): 21-25.
Xiao Z Y, Liu S. Atom search optimization based on golden-sine algorithm[J]. Microelectronics & Computer, 2019, 36(6): 21-25.
[15]牛培峰, 王丘亚, 马云鹏, 等. 基于量子自适应鸟群算法的锅炉NOx排放特性研究[J]. 计量学报, 2017, 38(6): 770-775.
Niu P F, Wang Q Y, Ma Y P, et al. Study on NOx Emission from Boiler Based on Quantum Adaptation Bird Swarm Algorithm[J]. Acta Metrologica Sinica, 2017, 38(6): 770-775.
[16]牛培峰, 吴志良, 马云鹏, 等. 基于鲸鱼优化算法的汽轮机热耗率模型预测[J]. 化工学报, 2017, 68(3): 1049-1057.
Niu P F, Wu Z L, Ma Y P, et al. Prediction of steam turbine heat consumption rate based on whale optimization algorithm[J]. CIESC Journal, 2017, 68(3): 1049-1057.
[17]牛培峰, 陈科, 刘阿玲, 等. 基于磷虾群算法的汽轮机组最优初压研究[J]. 动力工程学报, 2017, 37(8): 615-621.
Niu P F, Chen K, Liu A L, et al. Study on the Optimal Initial Pressure of a Steam Turbine Unit Based on Krill Herd Algorithm[J]. Journal of Chinese Society of Power Engineering, 2017, 37(8): 615-621.
[18]云曦, 阎维平. 火电厂汽轮机组影响热耗率计算的因素[J]. 东北电力技术, 2007,(3): 15-18.
Yun X, Yan W P. Factors Effecting Heat Consumption Calculation for Steamed Turbine of Fossil-fired Power Plant[J]. Northeast Electric Power Technology, 2007,(3): 15-18.