摘要为了使微电网建模更加精确,提出了一种基于优化回声状态网络(echo state network,ESN)的微电网等效建模方法。以微电网各种运行状态下并网接入端的电流和功率等数据分别作为网络的输入和输出,构建基于回声状态网络的微电网等效模型。由于回声状态网络初始化参数选取后就不再改变,缺乏自适应性,往往导致逼近能力不能达到最优;而烟花算法具有爆发性、瞬时性、分布并行性和可扩充性等优点;为了提高建模的精确性,故利用烟花算法对回声状态网络进行参数优化。通过模拟烟花的爆炸来建立数学模型,计算个体适应度值选择最优个体。建模结果与微电网并网仿真的实测数据对比,验证了该建模方法的合理型和准确性,说明所建模型具有较好的实际应用价值。
Abstract:In order to make micro-grid modeling more accurate, an equivalent modeling method of micro-grid based on echo state network (ESN) is proposed. Under various operating conditions of the micro-grid, the micro-grid equivalent model based on the echo status network is constructed with the current and power data of the access terminal, which are taken as the input and output of the network respectively. Since the initialization parameter of echo state network no longer changes, and lacking adaptability, it lead to the inability to achieve optimal approximation. Fireworks algorithm has the advantages of explosiveness, instantaneousity, parallelism and scalability. In order to improve the accuracy of the modeling, the fireworks algorithm is used to optimize the parameters of the echo state network, a mathematical model by simulating the explosion of fireworks is established, and selects the best individual by calculating individual fitness values. By comparing with the measured simulation data of the micro-grid connected the grid, the rationality and accuracy of the modeling method are verified, which shows that the model has a good practical value.
[1]Planas E, Andreu J, Gárate J I, et al. AC and DC technology in microgrids: A review[J]. Renewable & Sustainable Energy Reviews, 2015, 43: 726-749.
[2]沈鑫, 曹敏. 分布式电源并网对于配电网的影响研究[J]. 电工技术学报, 2015,(s1): 346-351.
Shen X, Cao M. Research on the Influence of Distributed Power Grid Connection on Distribution Network[J]. Transactions of China Electrotechnical Society, 2015,(s1): 346-351.
[3]Olivares D E, Mehrizi-Sani A, Etemadi A H, et al. Trends in micro grid Control [J]. IEEE Transactions on Smart Grid, 2014, 5(4): 1905-1919.
[4]吴忠强,刘重阳. 基于IHHO算法的光伏电池工程模型的参数辨识[J]. 计量学报, 2021, 42(2): 221-227.
Wu Z Q,Liu C Y. Parameter Identification of Photovoltaic Cell Engineering Model Based on IHHO Algorithm[J]. Acta Metrologica Sinica, 2021, 42(2): 221-227.
[4]Olivares D E, Mehrizi-Sani A, Etemadi A H, et al. Trends in micro-grid Control [J]. IEEE Transactions on Smart Grid, 2014, 5(4): 1905-1919.
[5]杨新法, 苏剑, 吕志鹏, 等. 微电网技术综述[J]. 中国电机工程学报, 2014,34(1): 57-70.
Yang X F, Su J, Lu Z P, et al. Review of micro-grid technology[J]. Proceedings of the CSEE, 2014,34(1): 57-70.
[6]Coelho V N, Weiss Cohen M, Coelho I M, et al. Multi-agent systems applied for energy systems integration: State-of-the-art applications and trends in micro-grids[J]. Applied Energy, 2017, 187: 820-832.
[7]Conti S, Rizzo S A. Modelling of micro-grid-renewable generators accounting for power-output correlation[J]. IEEE Transactions on Power Delivery, 2013, 28(4): 2124-2133.
[8]汪宝, 匡洪海, 郑丽平, 等. 分布式发电与配电网的协调发展与技术展望[J]. 电气技术, 2017, 18(3): 5-9.
Wang B, Yan H H, Zheng L P, et al. Coordinated Development and Technology Prospect of Distributed Generation and Distribution Network[J]. Electric Technology, 2017, 18(3): 5-9.
[9]Fathima A H, Palanisamy K. Optimization in micro-grids with hybrid energy systems-A review[J]. Renewable and Sustainable Energy Reviews, 2015, 45: 431-446.
[10]李鹏, 窦鹏冲, 李雨薇, 等. 微电网技术在主动配电网中的应用[J]. 电力自动化设备, 2015, 35(4): 8-16.
Li P, Dou P C, Li Y W, et al. Application of micro-grid technology in active distribution network[J]. Electric Power Automation Equipment, 2015, 35(4): 8-16.
[11]Brovont A D, Pekarek S D. Derivation and Application of Equivalent Circuits to Model Common-Mode Current in Micro-Grids[J]. IEEE Journal of Emerging & Selected Topics in Power Electronics, 2017, 5(1): 297-308.
[12]蔡昌春, 赫卫国, 程述成, 等. 基于循环神经网络的微电网并网等效建模[J]. 电力科学与技术学报, 2017, 32(1): 43-48.
Cai C C, He W G, Cheng S C, et al. Equivalent modeling of grid-connected micro-grid based on cyclic neural network[J]. Journal of Electric Power Science and Technology, 2017, 32(1): 43-48
[13]蔡昌春, 邓立华, 江冰, 等. 基于PSO-RBF神经网络的微电网等效建模[J]. 太阳能学报, 2016, 37(1): 76-83.
Cai C C, Deng L H, Jiang B, et al. Equivalent modeling of micro-grid based on PSO-RBF neural network[J]. Journal of Solar Energy, 2016, 37(1): 76-83.
[14]蔡昌春, 程述成, 邓志祥, 等. 基于模糊RBF神经网络的直流微电网并网等效建模[J]. 电网技术, 2016, 40(11): 3446-3452.
Cai C C, Cheng S C, Deng Z X, et al. Equivalent modeling of grid-connected DC micro-grid based on fuzzy RBF neural network[J]. Power System Technology, 2016, 40(11): 3446-3452.
[15]肖勇, 杨劲锋, 马千里, 等. 基于模块化回声状态网络的实时电力负荷预测[J]. 电网技术, 2015, 39(3): 804-809.
Xiao Y, Yang J F, Ma Q L, et al. Real-time power load forecasting based on modular echo state network[J]. Power System Technology, 2015, 39(3): 804-809.
[16]Yu L, Han A, Wang L, et al. Short-term load forecasting model for metro power supply system based on echo state neural network[C]//IEEE International Conference on Software Engineering and Service Science. 2017: 906-909.
[17]王鹤鸣, 王灵矫, 谭貌, 等. 基于多目标优化回声状态网络的电网故障恢复[J]. 云南大学学报: 自然科学版, 2017, 39(5): 760-767.
Wang H M, Wang L J, Tan M, et al. Grid fault recovery based on multi-objective optimization echo state network[J]. Journal of Yunnan University: Natural Science Edition, 2017, 39(5): 760-767.
[18]伦淑娴, 胡海峰. 基于罚函数内点法的泄露积分型回声状态网的参数优化[J]. 自动化学报, 2017, 43(7): 1160-1168.
Lun S X, Hu H F. Parameter Optimization of Leakage Integral Echo State Network Based on Penalty Function Interior Point Method[J]. Acta Automatica Sinica, 2017, 43(7): 1160-1168.
[19]谭莹. 烟花算法引论[M]. 北京:科学出版社, 2015.
[20]谢平, 王一凡, 江国乾, 等, 基于样本熵的风力发电机早期故障检测[J]. 计量学报, 2017, 38(5): 626-630.
Xie P, Wang Y F, Jiang G Q, et al. Incipient fault detection of generators in wind turbines based on sample entropy[J]. Acta Metrologica Sinica, 2017, 38(5): 626-630.
[21]吴忠强, 杜春奇, 张 伟, 等, 基于改进布谷鸟搜索算法的 永磁同步电机参数辨识[J]. 计量学报, 2017, 38(5): 631-636.
Wu Z Q, Du C Q, Zhang W, et al. The parameter identification of permanent magnet synchronous motor based on improved cukoo search algorithm[J]. Acta Metrologica Sinica, 2017, 38(5): 631-636.
[22]吴忠强,申丹丹,尚梦瑶,等. 基于改进蝗虫优化算法的光伏电池模型参数辨识[J]. 计量学报, 2020, 41(12): 1536-1543.
Wu Z Q,Shen D D,Shang M Y, et al. Parameter Identification of Photovoltaic Cell Model Based on Improved Grasshopper Optimization Algorithm[J]. Acta Metrologica Sinica, 2020, 41(12): 1536-1543.
[23]何群,尹飞飞,武鑫, 等, 基于长短期记忆网络的风电机组齿轮箱故障预测[J]. 计量学报, 2020, 41(10): 1284-1290.
He Q, Yin F F, Wu X, et al. Fault Prediction of Wind Turbine Gearbox Based on Long Short-term Memory Network[J]. Acta Metrologica Sinica, 2020, 41(10): 1284-1290.