2025年04月05日 星期六 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2021, Vol. 42 Issue (7): 846-852    DOI: 10.3969/j.issn.1000-1158.2021.07.03
  光学计量 本期目录 | 过刊浏览 | 高级检索 |
基于车载16线激光雷达的障碍物检测方法
孔德明1,段呈新1,巴特·古森斯2,王书涛1
1. 燕山大学电气工程学院,河北 秦皇岛066004
2. 根特大学通信与信息处理系,比利时 根特 B-9000
Obstacle Detection Method Based on Vehicle 16-line Lidar
KONG De-ming1,DUAN Cheng-xin1,GOOSSENS Bart2,WANG Shu-tao1
1. Institute of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
2. Department of Telecommunications and Information Processing, Ghent University, Ghent B-9000, Belgium
全文: PDF (2872 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对目前车载16线激光雷达点云数据中障碍物检测算法准确率不高的问题,提出了一种基于自适应网格聚类的障碍物检测方法。首先,结合八叉树与随机抽样一致性算法(RANSAC)去除地面点;其次,投影点云至二维网格,依据各网格高程信息快速提取高结构物;然后,建立两级网格模型,按照粗网格聚类结果的分布信息自适应地确定子网格分辨率,对可能包含多目标的障碍物在子网格层进行准确检测;最后,结合相邻时刻障碍物的状态信息修正检测结果。在16线激光雷达城市道路环境测试集下的实验结果表明:该算法可准确检测行驶区域内障碍物目标,优化后的聚类算法较好地降低了欠分割与过分割错误率,检测准确率达91%。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
孔德明
段呈新
巴特·古森斯
王书涛
关键词 计量学障碍物检测网格聚类自适应八叉树算法随机抽样一致性算法    
Abstract:Aiming at the issue of low accuracy of the existing in obstacle detection algorithm in the vehicle 16 line Lidar point cloud data, an obstacle detection algorithm based on adaptive grid is proposed. Firstly, octree and random sample consensus (RANSAC) algorithm is utilized to remove the ground point.Secondly, project the point cloud onto the 2D-grid, tall structure objects can be quickly extracted based on the elevation information in each grid.Thirdly, a two-level grid model is established, the sub-grid resolution is determined adaptively according to the distribution information of coarse grid clustering results, the obstacles that may contain multiple targets are detected precisely at the sub-grid layer.Finally, the clustering results are improved by combining the state information of two adjacent obstacles.The experimental results under urban road environment test sets show that the proposed method can precisely detect obstacles in driving area, the optimized clustering algorithm can reduce the error rates of under-segmentation and over-segmentation,the detection accuracy is 91%.
Key wordsmetrology    obstacle detection    grid clustering    self-adaption;octree    RANSAC
收稿日期: 2020-06-08      发布日期: 2021-07-15
PACS:  TB96  
基金资助:国家自然科学基金(61501394,61771419);河北省自然科学基金(F2016203155,F2017203220)
作者简介: 孔德明(1983-),吉林公主岭人,燕山大学副教授,研究方向为激光雷达三维扫描测量技术。Email: demingkong@ysu.edu.cn
引用本文:   
孔德明,段呈新,巴特·古森斯,王书涛. 基于车载16线激光雷达的障碍物检测方法[J]. 计量学报, 2021, 42(7): 846-852.
KONG De-ming,DUAN Cheng-xin,GOOSSENS Bart,WANG Shu-tao. Obstacle Detection Method Based on Vehicle 16-line Lidar. Acta Metrologica Sinica, 2021, 42(7): 846-852.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2021.07.03     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2021/V42/I7/846
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn