Evaluation of Uncertainty in Measurement with White-light Interference System
CAI Xiao-yu1,2, WEI Jia-si2, SUN Kai-xi2,3, LIU Na2,3, ZHANG Xue-dian1, ZHUANG Song-lin1
1. School of Optoelectronic Information and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2. Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China
3. Shanghai Jice Information Technology Co. Ltd., Shanghai 200234, China
Abstract:White-light interference system (WLIS) is widely used in the measurement of micro-nano surface morpography. The evaluation of measurement uncertainty is an important work to study the metrological characteristics of WLIS. The measurement models of pitch and step height by WLIS were built and the sources of uncertainty were determined. A 50× objective lens was used to measure a pitch standard and a step height standard, which nominal values are 5000 nm and 180 nm respectively. By analyzing the measurement repeatability, optical component quality, sensor parameters, motion module performance, test method and environment of WLIS, the combined measurement uncertainty of pitch and step height measurement are evaluated as 21 nm and 0.4 nm. The uncertainty analysis of WLIS ensures the accuracy and traceability of the measurement results, therefore, provides necessary references for dissemination of the nano-micro dimensional values by WLIS.
[1] Bodermann B, Buhr E, Ehret G, et al. Optical metrology of micro- and nanostructures at PTB: Status and future developments[C]//Ninth International Symposium on Laser Metrology.Singapore, Singapore,2008.
[2] Bosse H, Bodermann B, Dai G, et al. Challenges in nanometrology: high precision measurement of position and size[C]//58th IWK-Ilmenau Scientific Colloquium: Shaping the Future by Engineering. Ilmenau, Germany, 2014.
[3] 施玉书,张树,连笑怡,等. 毫米级纳米几何特征尺寸计量标准装置多自由度激光干涉计量系统[J]. 计量学报, 2020, 41(7): 769-774.
Shi Y S, Zhang S, Lian X Y, et al. Multi-DOF Laser Interferometry System for Metrological Standard Device for Nano-geometrical Characteristic Size in Millimeter Range[J].Acta Metrologica Sinica, 2020, 41(7): 769-774.
[4] Luo S, Suzuki T, Sasaki O, et al. Signal correction by detection of scanning position in a white-light interferometer for exact surface profile measurement[J]. Appl Opt, 2019, 58(13):3548-3554.
[5] Safrani A, Abdulhalim I. Real-time phase shift interference microscopy[J]. Optics Letter, 2014, 39(17):5220-5223.
[6] Zheng R, Chen X, Cai X, et al. Research on Defect Detection Method of Whole Surface of Small Ball Based on Field Scan[J]. J Phys Conf, 2021,1732:012120.
[7] 郭兵兵, 王权岱, 孙玉龙,等. 纳秒激光构造锡青铜粗糙表面的工艺研究[J].航空精密制造技术,2019, 55(4):10-15.
Guo B B, Wang Q D, Sun Y L et al. Study on Rough Surface Construction of Tin Bronze by Nanosecond Laser[J]. Aviation Precision Manufacturing Technology, 2019, 55(4):10-15.
[8] Schmit J, Olszak A. High-precision shape measurement by white-light interferometry with real-time scanner correction[J]. Appl Opt, 2002, 41(26): 5943-5950.
[9] 郭鑫, 施玉书, 皮磊, 等. Mirau干涉型微纳台阶高度测量系统的研究[J].计量学报, 2017,38(2):141-144.
Guo X, Shi Y S, Pi L, et al. Research of Micro/nano Step Height Measurement System with Mirau Interference[J]. Acta Metrologica Sinica, 2017,38(2):141-144.
[10] 何永辉,蒋剑峰,赵万生. 基于扫描白光干涉法的表面三维轮廓仪[J].光学技术,2001,27 (2):150-155.
He Y H, Jiang J F, Zhao W S. Surface 3D profiler based on scanning white light interferometry method[J]. Optical Technique, 2001,27 (2):150-155.
[11] Tong G. Vertical Scanning White-Light Interferometry for Dimensional Characterization of Microelectromechanical System Devices[J]. Acta Optica Sinica, 2007, 27(4):668-672.
[12] Wang S Z, Xie T B, Chang S P. Vertical scanning white light interfering profilometer based on Linnik interference microscope[C]// 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies. Dalian, China, 2010.
[13] 邓林涓. 白光干涉术的测量系统与处理算法的研究[D]. 杭州:中国计量大学,2015.
[14] 杨文军,胡迟,刘晓军. 一种可溯源原子力探针显微镜[J]. 计量学报, 2019, 40(2): 183-188.
Yang W J, Hu C, Liu X J. A Traceable Atomic Force Microscope[J]. Acta Metrologica Sinica, 2019, 40(2): 183-188.
[15] JJF(沪) 58-2018 微纳米线间隔标准样板校准规范[S].
[16] JJF(沪) 59-2018 微纳米台阶高度(深度)标准样板校准规范[S].
[17] Dai G, Koenders L, Pohlenz F, et al. Accurate and traceable calibration of two-dimensional gratings[J]. Meas sci technol, 2007, 18 (2) 415–421.
[18] Dai G, Koenders L, Pohlenz F, et al. Accurate and traceable calibration of one-dimensional gratings[J]. Meas sci technol, 2005, 16 (6) 1241–1249.
[19] GB/T 19067.1-2003 产品几何量技术规范(GPS)表面结构 轮廓法 测量标准 第1部分 实物测量标准[S].
[20] 刘俭,谷康,李梦周,等. 扫描探针显微镜下微纳结构深度测量的校准方法[J]. 计量学报, 2019, 40(4): 549-556.
Liu J, Gu K, Li M Z, et al. Calibration Method for Depth Measurement of Nano/microstructure in Scanning Probe Microscopy[J]. Acta Metrologica Sinica, 2019, 40(4): 549-556.
[21] Boedecker S, Bauer W, KrügerSehm R, et al. Comparability and uncertainty of shape measurements with white-light interferometers[C]// SPIE Photonics Europe. Brussels, Belgium,2010.
[22] JJF 1059.1-2012 测量不确定度评定与表示[S].
[23] JJF 1305-2011 线位移传感器校准规范[S].
[24] 崔建军, 高思田. 线位移传感器校准及不确定度分析[J]. 计量学报, 2010, 31(z1):169-173.
Cui J J, Gao S T. Calibration of Linear Displacement Transducer and Uncertainty of Analysis[J]. Acta Metrologica Sinica, 2010, 31(z1):169-173.
[25] 高志山,孙一峰,于颢彪,等. 三维位结构显微干涉检测方法[J]. 电光与控制,2019,26(11):1-5.
Gao Z S, Sun Y F, Yu H B, et al. Detection method of 3D micro-structure based on microscopic interference[J]. Electronics Optics & Control, 2019, 26(11):1-5.
[26] 张红霞. 微表面三维形貌相移干涉检测的研究[D]. 天津:天津大学, 2003
[27] 吴俊杰, 刘俭, 魏佳斯,等. 双测头复合型微纳米测量仪的研制[J]. 光学精密工程, 2020, 28(2):160-168.
Wu J J, Liu J, Wei J S, et al. Development of double probe composite micro-and nano measuring instrument[J]. Optics and Precision Engineering, 2020, 28(2):160-168.