1. Radiotherapy Department, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
2. National Institute of Metrology, Beijing 100029, China
Abstract:A simple and effective method of the half-value layer (HVL) measurement becomes more and more important increase with the number of X-ray equipment. Penelope was used to simulate the energy deposition of LiF(Mg, Cu, P) thermoluminescence dosimeters in N80 (65 keV), N100 (83 keV), N150 (118 keV), N200 (164 keV) heavy filtered narrow-spectrum irradiation fields with different copper thickness, the HVL of X-ray machine was obtained by analysis and calculation, the HVL of LiF X-ray machine with narrow spectrum standard irradiation field of N100 (83 keV) at 3 m was measured experimentally to verify the simulation program. The results showed that for the low energy N80 (65 keV), N100 (83 keV) irradiation field, LiF dosimeter is feasible to measure the half value layer of X-ray, it was not recommended to use the thermoluminescence to measure the half-value layer in N150 (118 keV), N200 (164 keV) irradiation field, because of the simulation results have large relative errors with the values obtained by the ionization method.
[1] 吴金杰, 王培玮, 段小娟, 等. 低能X射线基准辐射装置的建立[J]. 计量学报, 2011, 32(z1): 9-13.
Wu J J, Wang P W, Duan X J, et al. The Establishment of Radiation Primary Standard in the Range of Low Energy X-rays[J]. Acta Metrologica Sinica, 2011, 32(z1): 9-13.
[2] 吕雅竹,赵瑞,李德红, 等. X射线剂量当量仪校准因子不确定度评估[J]. 计量学报, 2020, 41(9): 1133-1137.
Lü Y Z, Zhao R, Li D H, et al. Uncertainty Evaluation of Calibration Factor for X-ray Dose Equivalent Instrument[J]. Acta Metrologica Sinica, 2020, 41(9): 1133-1137.
[3] 吕雅竹,郭彬,李德红, 等. 诊断X射线能谱影响因素的模拟与分析[J]. 计量学报, 2020, 41(8): 1023-1026.
Lü Y Z, Guo B, Li D H, et al. Simulation and Analysis of Factors Affecting Diagnostic X-ray Energy Spectrum[J]. Acta Metrologica Sinica, 2020, 41(8): 1023-1026.
[4] Aghamir F M, Behbahani R A. Energy spectrum of multi-radiation of X-rays in a low energy Mather-type plasma focus device[J]. Chinese Physics B, 2014, 23(6): 065203.
[5] 葛双, 吴金杰, 郭彬, 等. (20~300)kVX射线参考辐射装置的建立[J]. 核电子学与探测技术, 2016, 36(1): 68-72.
Ge S, Wu J J, Guo B, et al. The establishment Reference Radiation Device in the Range of (20~300)kV X-ray[J]. Nuclear Electronics and Detection Technology, 2016, 36(1): 68-72.
[6] 邢亚飞. 热释光测量技术用于X射线环境辐射剂量监测的研究[D]. 西安: 长安大学, 2014.
[7] 王旭, 程瑛, 漆明森, 等. LiF(Mg、Cu、P)热释光探测器剂量性能研究[J]. 原子能科技术, 2013, 47(10): 1888-1891.
Wang X, Cheng Y, Qi M S, et al. Dosimetry Performance of LiF(Mg、Cu、P)Thermoluminescence Dosimeter[J]. Atomic Energy Science and Technology, 2013, 47(10): 1888-1891.
[8] Bielajew A F, Salvat F. Improved elctron transport mechanics in the PENELOPE Monte Carlo model[J]. Nuclear Instruments & Methods in Physics Research, 2001, 173(3): 332-343.
[9] Duggan L, Hood C, Warren-Forward H, et al. Variations in dose response with x-ray energy of LiF: Mg, Cu, P thermoluminescence dosimeters: implications for clinical dosimetry[J]. Physics in Medicine and Biology, 2004, 49(17): 3831-3845.
[10] Kirby T H, Hanson W F, Johnston D A. Uncertainty analysis of absorbed dose calculations from thermoluminescence dosimeters[J]. Medical Physics, 1992, 19(6): 1427-1433.
[11] Santos F P, Dias T H V T, Stauffer A D, et al. Variation of energy linearity and w value in gaseous xenon radiation detectors for X-rays in the 0.1 to 25 KeV energy range: a Monter Carlo simulation study[J]. Nuclear Instruments & Methods in Physics Research, 1991, 307(2-3): 346-352.
[12] 葛双. (20~300)kV X射线参考辐射场的建立和研究[D]. 衡阳: 南华大学, 2016.
[13] ISO 4037-1-2019 X and gamma reference radiation for calibrating dosemeters and doserate metersand for determining their response as a function of photon energy—Part 1: Radiation characteristics and production methods[S].
[14] 李德红, 李兴东, 邬蒙蒙, 等. 热释光探测器刻度中关于电子平衡的初步实验研究[J]. 计量学报, 2011, 32(6A): 48-50.
Li D H, Li X D, Wu M M, et al. Preliminary Experimental Research on Electron Equilibrium for Calibration of Thermoluminescent Detector[J]. Acta Metrologica Sinica, 2011, 32(6A): 48-50.