1. Institute of Sound and Vibration Research, Hefei University of Technology, Hefei, Anhui 230009, China
2. Automotive NVH Engineering & Technology Research Center Anhui Province, Hefei,Anhui 230009, China
Abstract:Aiming at the problem that it is difficult to identify the weak vibration signal feature of rolling bearing faults, a rolling bearing fault diagnosis method based on improved intrinsic time scale decomposition (IITD) and fuzzy entropy (FE) input random forest (RF) pattern recognition was proposed. First, the bearing test bench was used to collect the vibration signals of the bearing in four states: normal, rolling body failure, inner ring failure, and outer ring failure; the collected vibration signals were decomposed into a set of proper rotation components (PRC) by IITD decomposition, Then selected the effective component that represents the main information of the fault to calculate its fuzzy entropy value and constructed the feature vector, which was input to a random forest classifier model for identification and classification. The experimental data analysis results show that this method can effectively realize the diagnosis of rolling bearing fault categories.
[1] 王泽文. 基于振动信号的滚动轴承故障诊断与预测系统研究[D]. 徐州: 中国矿业大学, 2014.
[2] 陈剑, 庄学凯, 吕伍佯, 等. 基于IVMD和马田系统的滚动轴承故障检测方法[J]. 计量学报, 2019, 40(6): 1083-1087.
Chen J, Zhuang X K, Lv W Y, et al. Fault Diagnosis of Rolling Bearing Using Mahalanobis-Taguchi System Based on IVMD[J]. Acta Metrologica Sinica, 2019, 40(6): 1083-1087.
[3] 汪朝海, 蔡晋辉, 曾九孙. 基于经验模态分解和主成分分析的滚动轴承故障诊断研究[J]. 计量学报, 2019, 40(6): 1077-1082.
Wang C H, Cai J H, Zeng J S. Research on Fault Diagnosis of Rolling Bearing Based on Empirical Mode Decomposition and Principal Component Analysis.[J]. Acta Metrologica Sinica, 2019, 40(6): 1077-1082.
[4] 金梅, 李盼, 张立国, 等. 基于EEMD模糊熵和GK聚类的信号特征提取方法及应用[J]. 计量学报, 2015, 36(5): 501-505.
Jin M, Li P, Zhang L G, et al. Signal feature extraction method and application based on EEMD fuzzy entropy and GK clustering[J]. Acta Metrologica Sinica, 2015, 36 (5): 501-505.
[5] 孟宗, 岳建辉,邢婷婷,等. 基于最大幅值变分模态分解和均方根熵的滚动轴承故障诊断[J]. 计量学报, 2020, 41(4): 455-460.
Meng Z, Yue J H, Xing T T, et al. Rolling Bearing Fault Diagnosis Based on Maximum Amplitude Variational Mode Decomposition and Root Mean Square Entropy[J]. Acta Metrologica Sinica, 2020, 41(4): 455-460.
[6] Frei M G, Osorio I. Intrinsic Time-Scale Decomposition: Time—Frequency—Energy Analysis and Real-Time Filtering of Non-stationary Signals[J]. Proceedings: Mathematical, Physical and Engineering Sciences, 2007, 463(2): 321-342.
[7] 钟先友, 赵春华, 陈保家, 等. 基于改进的本征时间尺度分解和基本尺度熵的齿轮故障诊断方法[J]. 中南大学学报, 2015, 46(3): 870-877.
Zhong X Y, Zhao C H, Chen B J, et al. Gear Fault Diagnosis Method Based on Improved Eigentime Scale Decomposition and Basic Scale Entropy[J]. Journal of Central South University, 2015, 46 (3): 870-877.
[8] 杨宇, 李杰, 潘海洋, 等. VPMCD和改进ITD的联合智能诊断方法研究[J]. 振动工程学报, 2013, 26(4): 608-616.
Yang Y, LI J, Pan H Y, et al. Research on The Joint Intelligent Diagnosis Method of VPMCD and Improved ITD[J]. Journal of Vibration Engineering, 2013, 26 (4): 608-616.
[9] 程军圣, 李海龙, 杨宇. 改进ITD和能量矩在齿轮故障诊断中的应用[J]. 振动、测试与诊断, 2013, 33(6): 954-959.
Cheng J S, Li H l, Yang Y. Application of Improved ITD and Energy Moment in Gear Fault Diagnosis[J]. Vibration, Test and Diagnosis, 2013, 33 (6): 954-959.
[10] 艾延廷, 董欢, 田晶. 一种航空发动机中介轴承故障诊断方法[J]. 机械设计与制造, 2018,(10): 157-160+164.
Ai Y T, Dong H, Tian J. A Fault Diagnosis Method of Aeroengine Intermediate Bearing[J]. Mechanical Design and Manufacturing, 2018, (10): 157-160 + 164.
[11] 张少波, 张海霞. 基于IITD样本熵和支持向量机的齿轮故障诊断方法[J]. 机械设计与制造, 2017,(12): 212-215, 219.
Zhang S B, Zhang H X. Gear Fault Diagnosis Method Based on IITD Sample Entropy and Support Vector Machine[J]. Mechanical Design and Manufacturing, 2017, (12): 212-215, 219.
[12] 向玲, 郭鹏飞, 高楠, 等. 基于IITD和FCM聚类的滚动轴承故障诊断[J]. 航空动力学报, 2018, 33(10): 2553-2560.
Xiang L, Guo P F, Gao N, et al. Fault Diagnosis of Rolling Bearing Based on IITD and FCM Clustering[J]. Journal of Aeronautical Power, 2018, 33 (10): 2553-2560.
[13] Zadeh L A. Probability measures of fuzzy events[J]. Journal of Mathematical Analysis & Applications, 1968, 23(2): 421-427.
[14] 郑近德, 程军圣, 杨宇. 基于改进的ITD和模糊熵的滚动轴承故障诊断方法[J]. 中国机械工程, 2012, 23(19): 2372-2377.
Zheng J D, Cheng J S, Yang Y. Fault Diagnosis Method of Rolling Bearing Based on Improved ITD and Fuzzy Entropy[J]. China Mechanical Engineering, 2012, 23 (19): 2372-2377.
[15] 李继猛,王慧,李铭,等. 基于改进的自适应无参经验小波变换的滚动轴承故障诊断[J]. 计量学报, 2020, 41(6): 710-716.
Li J M, Wang H, Li M, et al. Rolling Bearing Fault Diagnosis Based on Improved Adaptive Parameterless Empirical Wavelet Transform[J]. Acta Metrologica Sinica, 2020, 41(6): 710-716.