Abstract:In order to solve the limitation of the static model set of the traditional interactive multiple model(IMM)algorithm, a interactive multi-model set adaptation collaborative filtering(SAC-IMM)algorithm is proposed. By calculating the model matching probability between the target and different models in the current model set, the best model and the worst model in the current model match are automatically determined. The adaptive process of the model set is achieved by changing the structure of the static model set by using activation, retention and elimination strategies. Compared with the traditional IMM algorithm, the SAC-IMM algorithm proposed has a certain degree of improvement in positioning accuracy. By comparing with other IMM algorithms that have been proposed, the experimented results show that the SAC-IMM algorithm proposed has been optimized for state estimation of speed, acceleration, and turning rate. The proposed method can improve the accuracy of target tracking and positioning to a certain extent.
[1]张立国, 李晓松, 肖磊, 等. 基于单目视觉的四旋翼飞行器目标跟踪算法研究 [J]. 计量学报, 2018, 39 (3): 342-347.
Zhang L G, Li X S, Xiao L, et al. Research on Target Tracking Algorithm of Quadrotor Aircraft Based on Monocular Vision [J]. Acta Metrologica Sinica, 2018, 39 (3): 342-347.
[2]张烨, 周晓晶, 杨晓童. 基于单目视频的人体运动测量系统 [J]. 计量学报, 2019, 40 (3): 17-22.
Zhang Y, Zhou X J, Yang X T. Human Motion Measu-rement System Based on Monocular Video [J]. Acta Metrologica Sinica, 2019, 40 (3): 17-22.
[3]王金甲, 孔德明, 刘建波, 等. 基于传感器数据的人类活动识别研究 [J].高技术通讯, 2016, 26 (2): 207-214.
Wang J J, Kong D M, Liu J B, et al. Research on Human Activity Recognition Based on Sensor Data [J]. High-tech Communications, 2016, 26 (2): 207-214.
[4]Singer R A. Estimating optimal tracing filter performance for manned maneuvering targets [J]. IEEE Transactions on Aerospace and Electronic Systems, 1970, 6 (4): 473-483.
[5]陈亮. 机动目标跟踪关键技术研究 [D]. 哈尔滨: 哈尔滨工程大学, 2012.
[6]Bar-Shalom Y, Chang K C. Tracking a Maneuvering Tar-get Using Input Estimation Versus the Interacting Multiple Model Algorithm [J]. IEEE Transactions on Aerospace & Electronic Systems, 1989, 25 (2): 296-300.
[7]陈国通, 范圆圆, 刘琪. 一种改进的无迹Kalman滤波在SINS/GPS组合导航中的应用 [J]. 宇航总体技术, 2019, 3 (1): 23-28.
Chen G T, Fan Y Y, Liu Q. Application of an improved unscented Kalman filter in SINS/GPS integrated navigation [J]. Aerospace General Technology, 2019, 3 (1): 23-28.
[8]毛少锋, 冯新喜, 等. 具有固定滞后平滑的变结构机动目标跟踪 [J]. 重庆邮电大学学报 (自然科学版), 2015, 27 (2): 189-196.
Mao S F, Feng X X, et al. Variable Structure Maneu-vering Target Tracking with Fixed Lag Smoothing [J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2015, 27 (2): 189-196.
[9]陈卫东, 陈磊, 邓志巍,等. 基于混合相关滤波信息融合再检测的目标跟踪算法 [J]. 计量学报, 2019, 40 (6): 1006-1012.
Chen W D, Chen L, Deng Z W, et al. Target Tracking Algorithm Based on Hybrid Correlation Filtering Information Fusion and Re-detection [J]. Acta Metrologica Sinica, 2019, 40 (6): 1006-1012.
[10]沙俊臣. 基于模型集自适应多模交互滤波的机动目标跟踪算法研究及性能分析 [D]. 济南: 山东大学, 2013.
[11]王耀林,盖梦欧,周敏. IMM算法在空中复杂机动目标跟踪中的应用 [J]. 现代信息科技, 2020, 4 (13): 9-11.
Wang Y L, Gai M O, Zhou M. Application of IMM Algorithm in Tracking Complex Maneuvering Targets in Air [J]. Modern Information Technology, 2020, 4 (13): 9-11.
[12]于泽祥,蔡宗平,杨剑,等. IMM-SCKF算法在海面扩展目标跟踪中的应用 [J]. 现代防御技术, 2019, 47 (4): 90-96.
Yu Z Y,Cai Z P,Yang J, et al. The application of IMM-SCKF algorithm in tracking extended targets on the sea surface [J]. modern defense technology, 2019, 47 (4): 90-96.
[13]赵兵,王桁. 交互多模型Kalman滤波下的目标跟踪应用研究 [J].电子测量技术, 2019, 42 (11): 83-86.
Zhao B,Wang H. Research on the Application of Target Tracking Based on Interactive Multimodel Kalman Filter [J]. Electronic Measurement Technology, 2019, 42 (11): 83-86.
[14]莫宇帅. 无人机对地面目标操作行为控制方法研究 [D].天津: 中国民航大学, 2019.
[15]吴丹逸. 弹道目标定轨及系统稳定性研究 [D]. 武汉: 武汉理工大学, 2019.
[16]康婷婷, 张磊, 王跃佟,等. 基于卫星定位的网约车计程计时检测技术研究 [J]. 计量学报, 2020, 41 (3): 369-373.
Kang T T, Zhang L, Wang Y T,et al. Research on the Technology of Network Car-taking and Time-measuring Based on Satellite Positioning [J]. Acta Metrologica Sinica, 2020, 41 (3): 369-373.