Path Planning and Formation Research of Micro Mobile Robots
LI Jiang-hao1,YAN Ya-nan1,PENG Dan2
1. School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
2. College of Science, Yanshan University, Qinhuangdao, Hebei 066004, China
Abstract:Aiming at the problem that micro-robot formation and path optimization tasks. A combination of path planning and trajectory tracking is proposed, and finally the formation task is realized. Firstly, an improved algorithm based on traditional ant colony algorithm is proposed. By improving parameters and the initial pheromone matrix of traditional ant colony algorithm, the simulation results show that the improved algorithm improves the convergence speed by 50% and the global optimization ability by 30%. Secondly, the tracking controller based on Lyapunov algorithm is designed. Through simulation, the error eventually reaches 0 and the stability of the controller is verified. Finally, combined with Lyapunov controller and path optimization algorithm, the stable formation of multi-robot on the optimal path is completed.
李江昊,闫亚楠,彭丹. 微小型移动机器人的路径规划及编队研究[J]. 计量学报, 2021, 42(4): 445-450.
LI Jiang-hao,YAN Ya-nan,PENG Dan. Path Planning and Formation Research of Micro Mobile Robots. Acta Metrologica Sinica, 2021, 42(4): 445-450.
[1]张启彬, 王鹏, 陈宗海. 基于速度空间的移动机器 人同时避障和轨迹跟踪方法[J]. 控制与决策, 2017, 32(2): 358-362.
Zhang Q B, Wang P, Chen Z H. Simultaneous obstacle avoidance and trajectory tracking method for mobile robot based on velocity space[J]. Control and Decision, 2017, 32(2): 358-362.
[2]王保防, 张瑞雷, 李胜, 等. 基于轨迹跟踪车式移动机器人编队控制[J]. 控制与决策, 2015, 30(1): 176-180.
Wang B F, Zhang R L, Li S, et al. Formation control of vehicle-based mobile robot based on trajectory tracking[J]. Control and Decision, 2015, 30(1): 176-180.
[3]Wang Z D, Hirata Y, Kosuge K. Control a rigid caging formation for cooperative object transportation by multiple mobile robots[C] //IEEE International Conference on Robotics and Automation, 2004, 2: 1580-1585.
[4]韩青, 张常亮. Leader-Followers 多机器人编队控制方法[J]. 机床与液压, 2017, 45(9): 1-4.
Han Q, Zhang C L. Leader-Followers Multi-robot Formation Control Method[J]. Machine Tool & Hydraulics, 2017, 45(9): 1-4.
[5]张大伟, 孟森森, 邓计才. 多移动微小型机器人编队控制与协作避碰研究[J]. 仪器仪表学报, 2017, 38(03): 578-585.
Zhang D W, Meng S S, Deng J C. Research on formation control and cooperative collision avoidance of multi-mobile micro-miniature robots[J]. Chinese Journal of Scientific Instrument, 2017, 38(03): 578-585.
[6]易国, 毛建旭, 王耀南, 等. 非完整移动机器人领航-跟随编队分布式控制[J]. 仪器仪表学报, 2017, 38(9): 2266-2272.
Yi G, Mao J X, Wang Y N, et al. Distributed Control of Non-Complete Mobile Robot Pilot-Following Formation[J]. Chinese Journal of Scientific Instrument, 2017, 38(9): 2266-2272.
[7]王志中. 基于改进蚁群算法的移动机器人路径规划研究[J]. 机械设计与制造, 2018, (1):242-244.
Wang Z Z. Research on Path Planning of Mobile Robot Based on Improved Ant Colony Algorithm[J]. Mechanical Design & Manufacturing, 2018, (1): 242-244.
[8]赵春芳, 李江昊, 张大伟. 基于改进免疫遗传优化蚁群算法的移动机器人路径寻优研究[J]. 计量学报, 2019, 40(3): 505-510.
Zhao C F, Li J H, Zhang D W. Robot Path Optimization Research Based on Improved Immune Genetic Optimization Ant Colony Algorithm[J]. Acta Metrologica Sinica, 2019, 40(3): 505-510.
[9]金嘉琦, 刘畅, 徐振伟. 基于改进蚁群算法的焊接机器人路径规划[J]. 重型机械, 2017, (1): 44-46.
Jin J Q, Liu C, Xu Z W. Path Planning of Welding Robot Based on Improved Ant Colony Algorithm[J]. Heavy Machinery, 2017, (1): 44-46.
[10]张馨龙, 田光宇, 黄勇. 三轴正交机器人运动误差的建模与分析[J]. 计量学报, 2017, 38(4): 396-401.
Zhang X L, Tian G Y, Huang Y. Modeling and Analysis of Motion Errors of Three-Axis Orthogonal Robots[J]. Acta Metrologicala Sinica, 2017, 38(4):396-401.
[11]郭一军, 刘胜荣, 赵磊. 李亚普诺夫直接法在移动机器 人轨迹跟踪控制器设计中应用[J]. 江南大学学报, 2015, 14(6): 758-761.
Guo Y J, Liu S R, Zhao L. Application of Lyapunov Direct Method in the Design of Mobile Robot Trajectory Tracking Controller[J]. Journal of Southern Yangtze University, 2015, 14(6): 758-761.
[12]许万, 曹松, 罗西, 等. 双轮差速移动机器人轨迹跟踪混合控制算法研究[J]. 组合机床与自动化加工技术, 2018, (3): 78-83.
Xu W, Cao S, Luo X, et al. Research on Hybrid Tracking Hybrid Control Algorithm for Two-Wheel Differential Mobile Robot[J]. Combined Machine Tool & Automatic Processing Technology, 2018, (3): 78-83.