Abstract:To introduce a four-parameter sine wave curve-fit method, it can attain the curve-fit results only with the partial wave period. it based on the three-parameter sine wave curve-fit method, and it aims at the parameter estimation of ultra lower frequency sinusoidal with non-uniform sampling series, where, normally one cant get the whole period waveform due to time limit, and there are only partial sine wave period. The speciality of the arithmetic is that it turns the optimization of four parameters (amplitude, frequency, phase and offset) into the optimization of one parameter (only frequency), and without any original parameter pre-estimation. Both the simulation and experiments have proved the validity and feasibility, this method can be applied to the four-parameter sine wave curve-fit and the ultra low frequency sine wave parameter control.
梁志国. 非均匀采样条件下残周期正弦波形的最小二乘拟合算法[J]. 计量学报, 2021, 42(3): 358-364.
LIANG Zhi-guo. The Sinewave Fit Algorithm Based on Total Least-Square Method with Partial Period Waveforms and Non-uniform Sampling. Acta Metrologica Sinica, 2021, 42(3): 358-364.
[1]John K, McComb T R, Malewski R. Comparative Eva-luation of Computer Methods for Calculating the Best-Fit Sinusoid to the Digital Record of a High-Purity Sine Wave[J]. IEEE Transactions on Instrumentation and Meas-urement, 1987, 36 (3): 418-422.
[2]McComb T R, John K, Le Roux B C. A Comparative Evaluation of Some Practical Algorithms Used in the Effective Bits Test of Waveform Recorders[J]. IEEE Transactions on Instrumentation and Measurement, 1989, 38 (1): 37-42.
[3]Y C Jeng. High precision sinusoidal frequency estimator based on weighted least square method[J]. IEEE Transactions on Instrumentation and Measurement, 1987, 36 (2): 124-127.
[4]Jenq Y C, Crosby P B. Sinewave Parameter Estimation Algorithm with Application to Waveform Digitizer Effec-tive Bits Measurement[J]. IEEE Transactions on Instru-mentation and Measurement, 1988, 37 (4): 529-532.
[5]Cennamo F, Daponte P, Savastano M. Dynamic Testing and Diagnostics of Signal Analyzers[J]. IEEE Transac-tions on Instrumentation and Measurement, 1992, 41 (6): 840-844.
[6]Giaquninto N, Trotta A. Fast and accurate ADC testing via an enhanced sine wave fitting algorithm[J]. IEEE transactions on Instrumentation and Measurement, 1997, 46 (4): 1020-1025.
[7]Zhang J Q, Zhao X M, Hu X.Sine wave fit algorithm based on total least-squares method with application to ADC effective bits measurement[J]. IEEE transactions on Instrumentation and Measurement, 1997, 46 (4): 1026-1030.
[8]Handel P. Properties of the IEEE-STD-1057 Four-Parameter Sine Wave Fit Algorithm[J]. IEEE Transac-tions on Instrumentation and Measurement, 2000, 49 (6): 1189-1193.
[9]田社平, 王坚, 颜德田, 等. 基于遗传算法的正弦波信号参数提取方法[J]. 计量技术, 2005, (5): 3-5.
Tian S P, Wang J, Yan D T, et al. Base on inherit algorithmic sinusoidal parameter estimation[J]. Measure-ment Technique, 2005, (5): 3-5.
[10]梁志国, 朱济杰, 孟晓风. 四参数正弦曲线拟合的一种收敛算法[J]. 仪器仪表学报, 2006, 27 (11): 1513-1519.
Liang Z G, Zhu J J, Meng X F. Convergence algorithm of four-parameter sine wave curve-fit[J]. Chinese Journal of Scientific Instrument, 2006, 27 (11): 1513-1519.
[11]梁志国, 孟晓风. 残周期正弦波形的四参数拟合[J]. 计量学报, 2009, 30(3): 245-249.
Liang Z G, Meng X F.A Curve-fit Arithmetic of Four-parameter Sine Wave for Partial Period[J]. Acta Metrologica Sinica, 2009, 30(3): 245-249.
[12]IEEE Std 1057-1994, IEEE standard for digitizing waveform recorders[S]. 1994.
[13]Kollar I, Blair J J. Improved determination of the best fitting sine wave in ADC testing[J]. IEEE Transactions on Instrumentation and Measurement, 2005, 54 (5): 1978-1983.
[14]Bilau T Z, Megyeri T, Sárhegyi A, et al. Four-parameter fitting of sine wave testing result: Iteration and convergence[J]. Computer Standards & Interfaces, 2004, 26 (1): 51-56.
[15]Palfi V, Kollar I.Acceleration of the ADC Test With Sine-Wave Fit[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62 (5): 880-888.
[16]Belega D, Dallet D, Petri D.A High-Performance Procedure for Effective Number of Bits Estimation in Analog-to-Digital Converters[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60 (5): 1522-1532.
[17]Belega D, Petri D. Statistical Performance of the Effective-Number-of-Bit Estimators Provided by the Sine-Fitting Algorithms[J]. IEEE Transactions on Instru-mentation and Measurement, 2013, 62 (3): 633-640.
[18]Chen K F.Estimating Parameters of a Sine Wave by Separable Nonlinear Least Squares Fitting[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59 (12): 3214.
[19]Vucijak N M, Saranovac L V. A Simple Algorithm for the Estimation of Phase Difference Between Two Sinusoidal Voltages[J]. IEEE Transactions on Instru-mentation and Measurement, 2010, 59 (12): 3152.
[20]Belega D, Dallet D, Petri D.Performance comparison of the three-parameter and the four-parameter sine-fit algorithms[C]//Instrumentation and Measurement Tec-hnology Conference (I2MTC), 2011 IEEE, 1-4.
[21]Sárhegyi A,Kollár I. Robust Sine Wave Fitting in ADC Testing[C]//IMTC 2006-Instrumentation and Measure-ment Technology Conference, Sorrento, Italy, 2006, 24-27.
[22]Ramos P M, Janeiro O M, Radil T. Performance Comparison of Three Algorithms For Two-Channel Sinewave Parameter Estimation [J]. Metrology and Measurement Systems, 2010,17 (2): 255-270.
[23]梁志国, 一种四参数正弦参量估计算法的改进及实验分析[J]. 计量学报, 2017, 38 (4): 492-498.
Liang Z G.The improvement and experiment analysis for a four-parameter sine wave curve-fit method[J]. Acta Metrologica Sinica, 2017, 38 (4): 492-498.
[24]梁志国, 朱振宇. 非均匀采样正弦波形的最小二乘拟合算法[J]. 计量学报, 2014, 35 (5): 494-499.
Liang Z G, Zhu Z Y. The Sinewave Fit Algorithm Based on Total Least-square Method with Non-uniform Sampling[J]. Acta Metrologica Sinica, 2014, 35 (5): 494-499.
[25]梁志国, 何昭, 刘渊, 等. 捷变正弦信号源波形建立时间的精确测量[J]. 计量学报, 2020, 41 (9): 1115-1121.
Liang Z G, He Z, Liu Y, et al. The Precise Measurement Method for Settling Time of Hopping Sine Wave Based on Four-parameter Sinusoidal Curve-fit[J]. Acta Metrologica Sinica, 2020, 41 (9): 1115-1121.