2025年04月05日 星期六 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2021, Vol. 42 Issue (3): 395-400    DOI: 10.3969/j.issn.1000-1158.2021.03.22
  电离辐射、标准物质与生物计量 本期目录 | 过刊浏览 | 高级检索 |
基于EEMD-ICA的脑电去噪算法研究
樊凤杰1,白洋1,纪会芳2
1.燕山大学 电气工程学院,河北 秦皇岛 066004
2.联勤保障部队第九八四医院,北京 100094
Denoising Method of EEG Signal Based on EEMD-ICA
FAN Feng-jie1,BAI Yang1,JI Hui-fang2
1. Institute of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
2. No.984 hospital of the PLA, Beijing 100094, China
全文: PDF (2504 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 脑电信号(EEG)是脑神经细胞的电生理活动在大脑皮层的反映,但采集到的脑电信号一般都含有大量噪声。为了保留有效信息同时消除尽可能多的噪声,提出通过构造虚拟通道将集合经验模态分解与独立成分分析相结合的脑电信号去噪方法。首先,对脑电信号进行EEMD分解得到固有模态函数(IMF)分量,根据相关性准则筛选含噪声成分多的IMF分量构造虚拟通道进行ICA去噪;然后,将消噪后的结果与含信号成分多的IMF分量进行重构再次ICA去噪,得到最终去噪信号。为了验证EEMD-ICA去噪方法的有效性,以信噪比、均方根误差作为评价指标,将该方法与小波去噪法、EEMD去噪法、ICA去噪法进行比较,结果表明,EEMD-ICA去噪后的信噪比高于其它方法,均方根误差小于其它方法,综合分析该方法能更好地消除噪声。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊凤杰
白洋
纪会芳
关键词 计量学脑电信号去噪集合经验模态分解独立成分分析虚拟通道    
Abstract:The electroencephalograph (EEG) signal is the electro physiological activity of brain cells, it is reflected in the scalp surface. However it is usually interfered by noises during signal acquisition process. In order to reserve the effective information and eliminate as much noise as possible, a method of ensemble empirical mode decomposition (EEMD) combined with independent component analysis (ICA) is introduced. Firstly, the EEMD decomposition can get a certain number of intrinsic mode function (IMF) of EEG signals. The virtual channel is reconstructed by the IMF components with more noise components which are selected based on correlation coefficient and de-noised by ICA algorithm. Secondly, the denoised results and the IMF components with multiple signal are reconstructed. Finally, the reconstructed signal is denoised by ICA again, and the final denoised signal is obtained. The experimental results show that the mentioned method has better signal-to-noise ratio and smaller RMSE than the other denoising methods, including wavelet denoising, EEMD denoising and ICA denoising. It shows that the mentioned method can denoise better.
Key wordsmetrology    EEG signal    denoise    ensemble empirical mode decomposition    independent component analysis    virtual channel
收稿日期: 2019-06-28      发布日期: 2021-03-23
PACS:  TB99  
  TB973  
基金资助:国家自然科学基金(61201111);燕山大学博士基金(BL17026)
作者简介: 樊凤杰(1977-),女,河北秦皇岛人,燕山大学副教授,主要从事数据挖掘及模式识别、脑电信号分析与处理等方面的研究。Email: ffjmz@126.com
引用本文:   
樊凤杰,白洋,纪会芳. 基于EEMD-ICA的脑电去噪算法研究[J]. 计量学报, 2021, 42(3): 395-400.
FAN Feng-jie,BAI Yang,JI Hui-fang. Denoising Method of EEG Signal Based on EEMD-ICA. Acta Metrologica Sinica, 2021, 42(3): 395-400.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2021.03.22     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2021/V42/I3/395
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn