Abstract:Identification of two-phase flow based on multi-objective optimized parallel layer perceptrons extreme learning machine (MO-PLP-ELM) and electrical capacitance tomography (ECT) is proposed. Firstly, the random training method is used to generate the training and testing sets for the studied seven two-phase flow regimes, which assures the representativeness of the samples. Secondly, the capacitance data of the sample are normalized. Finally, the MO-PLP-ELM algorithm is used for flow regime identification, and the results are compared with those of BP neural network, support vector machine, extreme learning machine algorithms and extreme learning machine with parallel layer perceptrons. The results show that the average recognition rate can reach 96.1% using MO-PLP-ELM, which is obviously higher than other algorithms.
[1]张立峰, 王化祥. 基于SVM及电容层析成像的两相流流型识别[J]. 仪器仪表学报, 2009, 30(4): 812-816.
Zhang L F, Wang H X. Identification of two-phase flow regime based on support vector machine and electrical capacitance tomography technique[J]. Chinese Journal of Scientific Instrument, 2009, 30(4): 812-816.
[2]赵玉磊, 郭宝龙, 闫允一. 电容层析成像技术的研究进展与分析[J]. 仪器仪表学报, 2012, 33(8): 1909-1920.
Zhao Y L, Guo B L, Yan Y Y. Latest development and analysis of electrical capacitance tomography technology[J]. Chinese Journal of Scientific Instrument, 2012, 33(8): 1909-1920.
[3]张立峰. 压缩感知在电容层析成像中的应用[J]. 北京航空航天大学学报, 2017, 43(11): 2316-2321.
Zhang L F. Compressed sensing application to electrical capacitance tomography[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2316-2321.
[4]Meribout M, Saied I M. Real-Time Two-Dimensional Imaging of Solid Contaminants in Gas Pipelines Using an Electrical Capacitance Tomography System[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 3989-3996.
[5]张立峰, 朱炎峰, 宋亚杰. 三维电容层析成像组合电极激励测量模式[J]. 计量学报, 2019, 40(1): 130-133.
Zhang L F, Zhu Y F, Song Y J. Three-dimensional Combined-electrode Exciting-measuring Mode for Electrical Capacitance Tomography[J]. Acta Metrologica Sinica, 2019, 40(1): 130-133.
[6]王小鑫,王博,陈阳正,等. 基于电容层析成像技术重构图像的两相流流型识别[J]. 计量学报, 2020, 41(8): 942-946.
Wang X X, Wang B, Chen Y Z, etal. Two-phase Flow Pattern Recognition Based on Electrical Capacitance Tomography Reconstructed Images[J]. Acta Metrologica Sinica, 2020, 41(8): 942-946.
[7]张立峰, 朱炎峰. 基于粒子群优化极限学习机及电容层析成像的两相流流型及其参数预测[J]. 计量学报, 2020, 41(12): 1488-1493.
Zhang L F, Zhu Y F. Two-phase Flow Regime and its Parameter Prediction Based on Particle Swarm Optimization Extreme Learning Machine and Electrical Capacitance Tomography[J]. Acta Metrologica Sinica, 2020, 41(12): 1488-1493.
[8]孔银. 电容层析成像技术图像重建算法的研究[D]. 哈尔滨: 哈尔滨理工大学, 2017.
[9]乔立勇. 基于特征提取和神经网络的ECT流型辨识的研究[D]. 哈尔滨: 哈尔滨理工大学, 2010.
[10]马敏, 高振福, 王化祥. 基于BP神经网络的ECT图像重建算法[J]. 计量学报, 2013, 34(6): 524-528.
Ma M, Gao Z F, Wang H X. Image Reconstruction Algorithm for Electrical Capacitance Tomography Based on BP Neural Network[J]. Acta Metrologica Sinica, 2013, 34(6): 524-528.
[11]杨景明, 陈伟明, 车海军, 等. 基于粒子群算法优化支持向量机的铝热连轧机轧制力预报[J]. 计量学报, 2016, 37(1): 71-74.
Yang J M, Chen W M, Che H J, et al. Rolling Force Prediction Based on Support Vectors Machine with Particle Swam Optimization[J]. Acta Metrologica Sinica, 2016(1): 71-74.
[12]Huang G B , Zhu Q Y , Siew C K. Extreme learning machine: a new learning scheme of feedforward neural networks[J]. IEEE International Joint Conference on Neural Networks, 2004, 2: 985-990.
[13]Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70(1): 489-501.
[14]Caminhas W M , Vieira D A G , Vasconcelos J A . Parallel layer perceptron[J]. Neurocomputing, 2003, 55(3-4): 771-778.
[15]Tavares L D , Saldanha R R , Vieira D A G . Extreme learning machine with parallel layer perceptrons[J]. Neurocomputing, 2015, 166: 164-171.
[16]Tavares L D. Treinamento multiobjetivo de Extreme Learning Machines utilizando Decomposicao em Valores Singulares[D]. Brazil: Universidade Federal de Minas Gerais, 2015.